Clinical Assessment and Thickness Changes of the Oblique and Multifidus Muscles Using a Novel Screening Tool and Exercise Program: A Randomized Controlled Trial

Click name to view affiliation

Brian Catania
Search for other papers by Brian Catania in
Current site
Google Scholar
PubMed
Close
,
Travis Ross
Search for other papers by Travis Ross in
Current site
Google Scholar
PubMed
Close
,
Bradley Sandella
Search for other papers by Bradley Sandella in
Current site
Google Scholar
PubMed
Close
,
Bradley Bley
Search for other papers by Bradley Bley in
Current site
Google Scholar
PubMed
Close
, and
Andrea DiTrani Lobacz
Search for other papers by Andrea DiTrani Lobacz in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Training and assessment of the abdominal and trunk muscles are widely used in the clinical setting. However, it is unknown what types of exercises are most effective in activation of both the global and local stabilizers in these regions. Objective: The purpose of this study was to establish the reliability of a novel clinical screening tool (sling screen) to assess the muscles of the abdomen and trunk. The second aim was to use the clinical screening tool and musculoskeletal ultrasound to compare the effects of a rotary-based exercise program that targets both the global and local muscles to the effects of a traditional exercise program on the activation of the abdominal and trunk muscles. Design: Double-blind, randomized controlled trial. Setting: Sports medicine facility. Participants and Interventions: Thirty-one healthy participants were randomly allocated to receive a single-session rotary-based or traditional “core” exercise program. Main Outcome Measures: The participants were assessed at the baseline and immediately postintervention. The primary outcome measures were muscle thickness examined by musculoskeletal ultrasound and clinical examination of muscle activation using a screening tool. The data were collected by blind assessors. Reliability and validity of a clinical screening tool (sling screen) were also assessed. Results: The analysis of the covariance tests showed a significant increase in oblique thickness for the rotary exercise group. All participants displayed a significant increase in multifidus thickness. The Wilcoxon signed-rank tests revealed a significant increase in clinical assessment scores in the rotary exercise group but not the traditional exercise group. Reliability of the sling screen ranged from moderate to good. Conclusion: This clinical trial provides evidence that a rotary-based exercise program may be more effective in producing increases in oblique muscle thickness than traditional “core” exercises in young, healthy adults. The sling screen tool was able to identify these muscle thickness changes. Future studies should investigate how these results correlate to injury risk, other populations, and also how to implement the sling screen into clinical practice.

Catania and Ross are with the ChristianaCare, Newark, DE, USA. Sandella is with the ChristianaCare, Wilmington, DE, USA. Bley is with the Delaware Orthopaedic Specialists, Wilmington, DE, USA. DiTrani Lobacz is with the Department of Athletic Training, Neumann University, Aston, PA, USA.

Catania (bcatania@christianacare.org) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Bliss LS, Teeple P. Core stability: the centerpiece of any training program. Curr Sports Med Rep. 2005;4(3):179183. PubMed ID: 15907272 doi:10.1097/01.CSMR.0000306203.26444.4e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Akuthota V, Ferreiro A, Moore T, Fredericson M. Core stability exercise principles. Curr Sports Med Rep. 2008;7(1):3944. PubMed ID: 18296944 doi:10.1097/01.CSMR.0000308663.13278.69

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Reiman MP. Trunk stabilization training: an evidence basis for the current state of affairs. J Back Musculoskelet Rehabil. 2009;22(3):131142. PubMed ID: 20023342 doi:10.3233/BMR-2009-0226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Huxel Bliven KC, Anderson BE. Core stability training for injury prevention. Sports Health. 2013;5(6):514522. PubMed ID: 24427426 doi:10.1177/1941738113481200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Friedrich J, Brakke R, Akuthota V, Sullivan W. Reliability and practicality of the core score: four dynamic core stability tests performed in a physician office setting. Clin J Sport Med. 2017;27(4):409414. PubMed ID: 28653966 doi:10.1097/JSM.0000000000000366

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Willardson JM. Core stability training: applications to sports conditioning programs. J Strength Cond Res. 2007;21(3):979. PubMed ID: 17685697

  • 7.

    Cissik JM. The role of core training in athletic performance, injury prevention, and injury treatment. Strength Cond J. 2011;33(1):1015. doi:10.1519/SSC.0b013e3182076ac3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Sherry M, Best T, Heiderscheit B. The core: where are we and where are we going? Clin J Sport Med. 2005;15(1):12. PubMed ID: 15654183 doi:10.1097/00042752-200501000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Brumitt J, Matheson J, Meira EP. Core stabilization exercise prescription, part I: current concepts in assessment and intervention. Sports Health. 2013;5(6):504509. PubMed ID: 24427424 doi:10.1177/1941738113502451

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Brumitt J, Matheson J, Meira EP. Core stabilization exercise prescription, part 2: a systematic review of motor control and general (global) exercise rehabilitation approaches for patients with low back pain. Sports Health. 2013;5(6):510513. PubMed ID: 24427425 doi:10.1177/1941738113502634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gildea JE, Hides JA, Hodges PW. Size and symmetry of trunk muscles in ballet dancers with and without low back pain. J Orthop Sports Phys Ther. 2013;43(8):525533. PubMed ID: 23633627 doi:10.2519/jospt.2013.4523

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hides JA, Brown CT, Penfold L, Stanton WR. Screening the lumbopelvic muscles for a relationship to injury of the quadriceps, hamstrings, and adductor muscles among elite Australian football league players. J Orthop Sports Phys Ther. 2011;41(10):767775. PubMed ID: 21891873 doi:10.2519/jospt.2011.3755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hides J, Hughes B, Stanton W. Magnetic resonance imaging assessment of regional abdominal muscle function in elite AFL players with and without low back pain. Man Ther. 2011;16(3):279284. PubMed ID: 21185218 doi:10.1016/j.math.2010.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cowan SM, Schache AG, Brukner P, et al. Delayed onset of transversus abdominus in long-standing groin pain. Med Sci Sports Exerc. 2004;36(12):20402045. PubMed ID: 15570137 doi:10.1249/01.MSS.0000147587.81762.44

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hodges PW, Richardson CA. Delayed postural contraction of transversus abdominis in low back pain associated with movement of the lower limb. Clin Spine Surg. 1998;11(1):4656.

    • Search Google Scholar
    • Export Citation
  • 16.

    Djordjevic O, Djordjevic A, Konstantinovic L. Interrater and intrarater reliability of transverse abdominal and lumbar multifidus muscle thickness in subjects with and without low back pain. J Orthop Sports Phys Ther. 2014;44(12):979988. PubMed ID: 25366083 doi:10.2519/jospt.2014.5141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Haddas R, Sawyer SF, Sizer Jr PS, Brooks T, Chyu M, James CR. Effects of volitional spine stabilization and lower extremity fatigue on trunk control during landing in individuals with recurrent low back pain. J Orthop Sports Phys Ther. 2016;46(2):7178. PubMed ID: 26721228 doi:10.2519/jospt.2016.6048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hodges P. Transversus abdominis: a different view of the elephant. Br J Sports Med. 2008;42(12):941944. PubMed ID: 19096017 doi:10.1136/bjsm.2008.051037

  • 19.

    Smith JA, Kulig K. Altered multifidus recruitment during walking in young asymptomatic individuals with a history of low back pain. J Orthop Sports Phys Ther. 2016;46(5):365374. PubMed ID: 26999410 doi:10.2519/jospt.2016.6230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wilkerson GB, Giles JL, Seibel DK. Prediction of core and lower extremity strains and sprains in collegiate football players: a preliminary study. J Athl Train. 2012;47(3):264272. PubMed ID: 22892407 doi:10.4085/1062-6050-47.3.17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bagherian S, Ghasempoor K, Rahnama N, Wikstrom EA. The effect of core stability training on functional movement patterns in collegiate athletes. J Sport Rehab. 2019;28(5):444449. doi:10.1123/jsr.2017-0107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Imai A, Imai T, Iizuka S, Kaneoka K. A trunk stabilization exercise warm-up may reduce ankle injuries in junior soccer players. Int J Sports Med. 2018;39(04):270274. doi:10.1055/s-0044-100923

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Whittaker JL, McLean L, Hodder J, Warner MB, Stokes MJ. Association between changes in electromyographic signal amplitude and abdominal muscle thickness in individuals with and without lumbopelvic pain. J Orthop Sports Phys Ther. 2013;43(7):466477. PubMed ID: 23633621 doi:10.2519/jospt.2013.4440

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wirth K, Hartmann H, Mickel C, Szilvas E, Keiner M, Sander A. Core stability in athletes: a critical analysis of current guidelines. Sports Med. 2017;47(3):401414. PubMed ID: 27475953 doi:10.1007/s40279-016-0597-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Moseley GL. Evidence for a direct relationship between cognitive and physical change during an education intervention in people with chronic low back pain. Eur J Pain. 2004;8(1):3945. PubMed ID: 14690673 doi:10.1016/S1090-3801(03)00063-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    O’sullivan PB, Phyty GDM, Twomey LT, Allison GT. Evaluation of specific stabilizing exercise in the treatment of chronic low back pain with radiologic diagnosis of spondylolysis or spondylolisthesis. Spine. 1997;22(24):29592967. doi:10.1097/00007632-199712150-00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Norris C, Matthews M. The role of an integrated back stability program in patients with chronic low back pain. Complement Ther Clin Pract. 2008;14(4):255263. PubMed ID: 18940712 doi:10.1016/j.ctcp.2008.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Koumantakis GA, Watson PJ, Oldham JA. Trunk muscle stabilization training plus general exercise versus general exercise only: randomized controlled trial of patients with recurrent low back pain. Phys Ther. 2005;85(3):209225. PubMed ID: 15733046 doi:10.1093/ptj/85.3.209

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kavcic N, Grenier S, McGill SM. Determining the stabilizing role of individual torso muscles during rehabilitation exercises. Spine. 2004;29(11):12541265. PubMed ID: 15167666 doi:10.1097/00007632-200406010-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Koppenhaver SL, Hebert JJ, Fritz JM, Parent EC, Teyhen DS, Magel JS. Reliability of rehabilitative ultrasound imaging of the transversus abdominis and lumbar multifidus muscles. Arch Phys Med Rehabil. 2009;90(1):8794. PubMed ID: 19154834 doi:10.1016/j.apmr.2008.06.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Teyhen DS, Gill NW, Whittaker JL, Henry SM, Hides JA, Hodges P. Rehabilitative ultrasound imaging of the abdominal muscles. J Orthop Sports Phys Ther. 2007;37(8):450466. PubMed ID: 17877281 doi:10.2519/jospt.2007.2558

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Wallwork TL, Hides JA, Stanton WR. Intrarater and interrater reliability of assessment of lumbar multifidus muscle thickness using rehabilitative ultrasound imaging. J Orthop Sports Phys Ther. 2007;37(10):608612. PubMed ID: 17970407 doi:10.2519/jospt.2007.2418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hebert JJ, Koppenhaver SL, Teyhen DS, Walker BF, Fritz JM. The evaluation of lumbar multifidus muscle function via palpation: reliability and validity of a new clinical test. Spine. 2015;15(6):11961202. doi:10.1016/j.spinee.2013.08.056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Vleeming A. Second interdisciplinary world congress on low back pain. The Integrated Function of the Lumbar Spine and Sacroiliac Joints (pp. 149–168). San Diego, CA: ECO; 1995.

    • Search Google Scholar
    • Export Citation
  • 35.

    Vleeming A, Pool-Goudzwaard A, Stoeckart R, Wingerden van JP, Snijders CJ. The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. Spine. 1993;20(7):753758. doi:10.1097/00007632-199504000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Page P, Frank C, Lardner R. Assessment and Treatment of Muscle Imbalance: The Janda Approach. Champaign, IL: Human Kinetics; 2010.

  • 37.

    Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189198. PubMed ID: 16526831 doi:10.2165/00007256-200636030-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Myers TW. Anatomy Trains:Myofascial Meridians for Manual and Movement Therapists. New York, NY: Elsevier, Churchill Livingstone; 2013.

  • 39.

    Wilke J, Krause F, Vogt L, Banzer W. What is evidence-based about myofascial chains: a systematic review. Arch Phys Med Rehabil. 2016;97(3):454461. PubMed ID: 26281953 doi:10.1016/j.apmr.2015.07.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Kiesel KB, Uhl TL, Underwood FB, Rodd DW, Nitz AJ. Measurement of lumbar multifidus muscle contraction with rehabilitative ultrasound imaging. Man Ther. 2007;12(2):161166. PubMed ID: 16973400 doi:10.1016/j.math.2006.06.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Ferreira PH, Ferreira ML, Hodges PW. Changes in recruitment of the abdominal muscles in people with low back pain: ultrasound measurement of muscle activity. Spine. 2004;29(22):25602566. PubMed ID: 15543074 doi:10.1097/01.brs.0000144410.89182.f9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Hides JA, Stanton WR, Mendis MD, Gildea J, Sexton MJ. Effect of motor control training on muscle size and football games missed from injury. Med Sci Sports Exerc. 2012;44(6):11411149. PubMed ID: 22157811 doi:10.1249/MSS.0b013e318244a321

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Hides JA, Stanton WR. Can motor control training lower the risk of injury for professional football players? Med Sci Sports Exerc. 2014;46(4):762768. PubMed ID: 24056268 doi:10.1249/MSS.0000000000000169

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Brumitt J, Dale RB. Integrating shoulder and core exercises when rehabilitating athletes performing overhead activities. N Am J Sports Phys Ther. 2009;4(3):132138. PubMed ID: 21509108

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Sweeney N, O’sullivan C, Kelly G. Multifidus muscle size and percentage thickness changes among patients with unilateral chronic low back pain (CLBP) and healthy controls in prone and standing. Man Ther. 2014;19(5):433439. PubMed ID: 24909431 doi:10.1016/j.math.2014.04.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Mangum LC, Sutherlin MA, Saliba SA, Hart JM. Reliability of ultrasound imaging measures of transverse abdominis and lumbar multifidus in various positions. PM&R. 2016;8(4):340347. doi:10.1016/j.pmrj.2015.09.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159174. doi:10.2307/2529310

  • 48.

    Lederman E. The myth of core stability. J Bodywork Movement Ther. 2010;14(1):8498. doi:10.1016/j.jbmt.2009.08.001

  • 49.

    Willardson JM. Core stability training for healthy athletes: a different paradigm for fitness professionals. Strength Cond J. 2007;29(6):42.

    • Search Google Scholar
    • Export Citation
  • 50.

    McGill S. Core training: evidence translating to better performance and injury prevention. Strength Cond J. 2010;32(3):3346. doi:10.1519/SSC.0b013e3181df4521

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Akbari A, Khorashadizadeh S, Abdi G. The effect of motor control exercise versus general exercise on lumbar local stabilizing muscles thickness: randomized controlled trial of patients with chronic low back pain. J Back Musculoskelet Rehabil. 2008;21(2):105112. doi:10.3233/BMR-2008-21206

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Mannion A, Caporaso F, Pulkovski N, Sprott H. Spine stabilisation exercises in the treatment of chronic low back pain: a good clinical outcome is not associated with improved abdominal muscle function. Eur Spine J. 2012;21(7):13011310. PubMed ID: 22270245. doi:10.1007/s00586-012-2155-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Mannion AF, Pulkovski N, Gubler D, et al. Muscle thickness changes during abdominal hollowing: an assessment of between-day measurement error in controls and patients with chronic low back pain. Eur Spine J. 2008;17(4):494501. PubMed ID: 18196294 doi:10.1007/s00586-008-0589-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Vasseljen O, Fladmark AM, Westad C, Torp HG. Onset in abdominal muscles recorded simultaneously by ultrasound imaging and intramuscular electromyography. J Electromyogr Kinesiol. 2009;19(2):e23e31. PubMed ID: 17897842 doi:10.1016/j.jelekin.2007.07.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Vasseljen O, Unsgaard-Tondel M, Westad C, Mork PJ. Effect of core stability exercises on feed-forward activation of deep abdominal muscles in chronic low back pain: a randomized controlled trial. Spine. 2012;37(13):11011108. PubMed ID: 22146280 doi:10.1097/BRS.0b013e318241377c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Koppenhaver SL, Fritz JM, Hebert JJ, et al. Association between changes in abdominal and lumbar multifidus muscle thickness and clinical improvement after spinal manipulation. J Orthop Sports Phys Ther. 2011;41(6):389399. PubMed ID: 21471653 doi:10.2519/jospt.2011.3632

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Moore KL, Dalley AF, Agur AM. Clinically Oriented Anatomy. Philadelphia, PA: Lippincott Williams & Wilkins; 2013.

  • 58.

    Juker D, McGill S, Kropf P, Steffen T. Quantitative intramuscular myoelectric activity of lumbar portions of psoas and the abdominal wall during a wide variety of tasks. Med Sci Sports Exerc. 1998;30(2):301310. PubMed ID: 9502361 doi:10.1097/00005768-199802000-00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    McGill S, Juker D, Kropf P. Appropriately placed surface EMG electrodes reflect deep muscle activity (psoas, quadratus lumborum, abdominal wall) in the lumbar spine. J Biomech. 1996;29(11):15031507. PubMed ID: 8894932 doi:10.1016/0021-9290(96)84547-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Hodges PW. Changes in motor planning of feedforward postural responses of the trunk muscles in low back pain. Exp Brain Res. 2001;141(2):261266. PubMed ID: 11713638 doi:10.1007/s002210100873

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Lehman GJ, Vernon H, McGill SM. Effects of a mechanical pain stimulus on erector spinae activity before and after a spinal manipulation in patients with back pain: a preliminary investigation. J Manipulative Physiol Ther. 2001;24(6):402406. PubMed ID: 11514817 doi:10.1067/mmt.2001.116421

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Hodges PW, Richardson CA. Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch Phys Med Rehabil. 1999;80(9):10051012. PubMed ID: 10489000 doi:10.1016/S0003-9993(99)90052-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Partner SL, Sutherlin MA, Acocello S, Saliba SA, Magrum EM, Hart JM. Changes in muscle thickness after exercise and biofeedback in people with low back pain. J Sport Rehab. 2014;23(4):307318. doi:10.1123/JSR.2013-0057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Urquhart DM, Hodges PW, Allen TJ, Story IH. Abdominal muscle recruitment during a range of voluntary exercises. Man Ther. 2005;10(2):144153. PubMed ID: 15922235 doi:10.1016/j.math.2004.08.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Hides JA, Boughen CL, Stanton WR, Strudwick MW, Wilson SJ. A magnetic resonance imaging investigation of the transversus abdominis muscle during drawing-in of the abdominal wall in elite Australian football league players with and without low back pain. J Orthop Sports Phys Ther. 2010;40(1):410. PubMed ID: 20044702 doi:10.2519/jospt.2010.3177

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Stokes IA, Gardner-Morse MG, Henry SM. Abdominal muscle activation increases lumbar spinal stability: analysis of contributions of different muscle groups. Clin Biomech. 2011;26(8):797803. doi:10.1016/j.clinbiomech.2011.04.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Grenier SG, McGill SM. Quantification of lumbar stability by using 2 different abdominal activation strategies. Arch Phys Med Rehabil. 2007;88(1):5462. PubMed ID: 17207676 doi:10.1016/j.apmr.2006.10.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Bourne MN, Timmins RG, Opar DA, et al. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018;48(2):251267. PubMed ID: 29116573 doi:10.1007/s40279-017-0796-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Raney NH, Teyhen DS, Childs JD. Observed changes in lateral abdominal muscle thickness after spinal manipulation: a case series using rehabilitative ultrasound imaging. J Orthop Sports Phys Ther. 2007;37(8):472479. PubMed ID: 17877283 doi:10.2519/jospt.2007.2523

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Gill NW, Teyhen DS, Lee IE. Improved contraction of the transversus abdominis immediately following spinal manipulation: a case study using real-time ultrasound imaging. Man Ther. 2007;12(3):280285. PubMed ID: 16971162 doi:10.1016/j.math.2006.06.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Brenner AK, Gill NW, Buscema CJ, Kiesel K. Improved activation of lumbar multifidus following spinal manipulation: a case report applying rehabilitative ultrasound imaging. J Orthop Sports Phys Ther. 2007;37(10):613619. PubMed ID: 17970408 doi:10.2519/jospt.2007.2470

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Pillastrini P, Ferrari S, Rattin S, Cupello A, Villafañe JH, Vanti C. Exercise and tropism of the multifidus muscle in low back pain: a short review. J Phys Ther Sci. 2015;27(3):943945. PubMed ID: 25931765 doi:10.1589/jpts.27.943

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Willemink MJ, van Es HW, Helmhout PH, Diederik AL, Kelder JC, van Heesewijk JP. The effects of dynamic isolated lumbar extensor training on lumbar multifidus functional cross-sectional area and functional status of patients with chronic nonspecific low back pain. Spine. 2012;37(26):E1651E1658. PubMed ID: 23023592 doi:10.1097/BRS.0b013e318274fb2f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Reese NB. Muscle and Sensory Testing-E-book. St. Louis, MO: Elsevier Health Sciences; 2013.

  • 75.

    Gross JM, Fetto J, Rosen E. Musculoskeletal Examination. Hoboken, NJ: John Wiley & Sons; 2015.

  • 76.

    MacDonald DA, Dawson AP, Hodges PW. Behavior of the lumbar multifidus during lower extremity movements in people with recurrent low back pain during symptom remission. J Orthop Sports Phys Ther. 2011;41(3):155164. doi:10.2519/jospt.2011.3410

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Yahia L, Rhalmi S, Newman N, Isler M. Sensory innervation of human thoracolumbar fascia: an immunohistochemical study. Acta Orthop Scand. 1992;63(2):195197. PubMed ID: 1590057 doi:10.3109/17453679209154822

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Stecco C, Porzionato A, Lancerotto L, et al. Histological study of the deep fasciae of the limbs. J Body Mov Ther. 2008;12(3):225230. doi:10.1016/j.jbmt.2008.04.041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Andersson EA, Nilsson J, Ma Z, Thorstensson A. Abdominal and hip flexor muscle activation during various training exercises. Eur J Appl Physiol Occup Physiol. 1997;75(2):115123. PubMed ID: 9118976 doi:10.1007/s004210050135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Andersson EA, Ma Z, Thorstensson A. Relative EMG levels in training exercises for abdominal and hip flexor muscles. Scand J Rehabil Med. 1998;30(3):175183. PubMed ID: 9782545 doi:10.1080/003655098444110

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Axler CT, McGill SM. Low back loads over a variety of abdominal exercises: searching for the safest abdominal challenge. Med Sci Sports Exerc. 1997;29(6):804811. PubMed ID: 9219209 doi:10.1097/00005768-199706000-00011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Escamilla RF, Babb E, DeWitt R, et al. Electromyographic analysis of traditional and nontraditional abdominal exercises: implications for rehabilitation and training. Phys Ther. 2006;86(5):656671. PubMed ID: 16649890 doi:10.1093/ptj/86.5.656

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Escamilla RF, Lewis C, Bell D, et al. Core muscle activation during swiss ball and traditional abdominal exercises. J Orthop Sports Phys Ther. 2010;40(5):265276. PubMed ID: 20436242 doi:10.2519/jospt.2010.3073

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Dello Iacono A, Padulo J, Ayalon M. Core stability training on lower limb balance strength. J Sports Sci. 2016;34(7):671678. doi:10.1080/02640414.2015.1068437

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Brito J, Figueiredo P, Fernandes L, et al. Isokinetic strength effects of FIFA’s “The 11+” injury prevention training programme. Isokinetics Exerc Sci. 2010;18(4):211215. doi:10.3233/IES-2010-0386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Daneshjoo A, Mokhtar AH, Rahnama N, Yusof A. The effects of injury preventive warm-up programs on knee strength ratio in young male professional soccer players. PLoS One. 2012;7(12):e50979. PubMed ID: 23226553 doi:10.1371/journal.pone.0050979

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Hodges P, Pengel L, Herbert R, Gandevia S. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve. 2003;27(6):682692. PubMed ID: 12766979 doi:10.1002/mus.10375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    van der Horst N, Hoef SV, Otterloo PV, Klein M, Brink M, Backx F. Effective but not adhered to: how can we improve adherence to evidence-based hamstring injury prevention in amateur football? [published online ahead of print December 13, 2018]. Clin J Sport Med.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5 0 0
Full Text Views 10727 3481 129
PDF Downloads 7817 1791 84