Electromyographic Analysis of Hip and Trunk Muscle Activity During Side Bridge Exercises in Subjects With Gluteus Medius Weakness

in Journal of Sport Rehabilitation

Click name to view affiliation

Kyung-eun Lee
Search for other papers by Kyung-eun Lee in
Current site
Google Scholar
PubMed
Close
,
Seung-min Baik
Search for other papers by Seung-min Baik in
Current site
Google Scholar
PubMed
Close
,
Chung-hwi Yi
Search for other papers by Chung-hwi Yi in
Current site
Google Scholar
PubMed
Close
,
Oh-yun Kwon
Search for other papers by Oh-yun Kwon in
Current site
Google Scholar
PubMed
Close
, and
Heon-seock Cynn
Search for other papers by Heon-seock Cynn in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Side bridge exercises strengthen the hip, trunk, and abdominal muscles and challenge the trunk muscles without the high lumbar compression associated with trunk extension or curls. Previous research using electromyography (EMG) reports that performance of the side bridge exercise highly activates the gluteus medius (Gmed). However, to the best of our knowledge, no previous research has investigated EMG amplitude in the hip and trunk muscles during side bridge exercise in subjects with Gmed weakness. Objective: The purpose of this study was to examine the EMG activity of the hip and trunk muscles during 3 variations of the side bridge exercise (side bridge, side bridge with knee flexion, and side bridge with knee flexion and hip abduction of the top leg) in subjects with Gmed weakness. Design: Repeated-measures experimental design. Setting: Research laboratory. Patients: Thirty subjects (15 females and 15 males) with Gmed weakness participated in this study. Intervention: Each subject performed 3 variations of the side bridge exercise in random order. Main Outcome Measures: Surface EMG was used to measure the muscle activities of the rectus abdominis, external oblique, longissimus thoracis, multifidus, Gmed, gluteus maximus, and tensor fasciae latae (TFL), and Gmed/TFL muscle activity ratio during 3 variations of the side bridge exercise. Results: There were significant differences in Gmed (F2,56 = 110.054, P < .001), gluteus maximus (F2,56 = 36.416, P < .001), and TFL (F2,56 = 108.342, P < .001) muscles among the 3 side bridge exercises. There were significant differences in the Gmed/TFL muscle ratio (F2,56 = 20.738, P < .001). Conclusion: Among 3 side bridge exercises, the side bridge with knee flexion may be effective for the individuals with Gmed weakness among 3 side bridge exercises to strengthen the gluteal muscles, considering the difficulty of the exercise and relative contribution of Gmed and TFL.

Lee and Baik are with the Department of Physical Therapy, The Graduate School, Yonsei University, Seoul, South Korea. Yi, Kwon, and Cynn are with the Department of Physical Therapy, College of Health Science, Yonsei University, Wonju, Gangwon, South Korea.

Yi (pteagle@yonsei.ac.kr) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926934. doi:10.1249/01.MSS.0000128145.75199.C3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Nelson-Wong E, Flynn T, Callaghan JP. Development of active hip abduction as a screening test for identifying occupational low back pain. J Orthop Sports Phys Ther. 2009;39(9):649657. doi:10.2519/jospt.2009.3093

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Grimaldi A. Assessing lateral stability of the hip and pelvis. Man Ther. 2011;16(1):2632. doi:10.1016/j.math.2010.08.005

  • 4.

    Cichanowski HR, Schmitt JS, Johnson RJ, Niemuth PE. Hip strength in collegiate female athletes with patellofemoral pain. Med Sci Sports Exerc. 2007;39(8):12271232. doi:10.1249/mss.0b013e3180601109

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hinman RS, Hunt MA, Creaby MW, Wrigley TV, McManus FJ, Bennell KL. Hip muscle weakness in individuals with medial knee osteoarthritis. Arthritis Care Res. 2010;62(8):11901193. doi:10.1002/acr.20199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ekstrom RA, Donatelli RA, Carp KC. Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. J Orthop Sports Phys Ther. 2007;37(12):754762. doi:10.2519/jospt.2007.2471

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ebert JR, Edwards PK, Fick DP, Janes GC. A systematic review of rehabilitation exercises to progressively load the gluteus medius. J Sport Rehabil. 2017;26(5):418436. doi:10.1123/jsr.2016-0088

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McGill S, Juker D, Kropf P. Quantitative intramuscular myoelectric activity of quadratus lumborum during a wide variety of tasks. Clin Biomech. 1996;11(3):170172. doi:10.1016/0268-0033(95)00056-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Youdas JW, Boor MMP, Darfler AL, Koenig MK, Mills KM, Hollman JH. Surface electromyographic analysis of core trunk and hip muscles during selected rehabilitation exercises in the side-bridge to neutral spine position. Sports Health. 2014;6(5):416421. doi:10.1177/1941738114539266

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Boren K, Conrey C, Le Coguic J, Paprocki L, Voight M, Robinson TK. Electromyographic analysis of gluteus medius and gluteus maximus during rehabilitation exercises. Int J Sports Phys Ther. 2011;6(3):206223.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    McGill SM, Karpowicz A. Exercises for spine stabilization: motion/motor patterns, stability progressions, and clinical technique. Arch Phys Med Rehabil. 2009;90(1):118126. doi:10.1016/j.apmr.2008.06.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Arokoski JP, Valta T, Airaksinen O, Kankaanpää M. Back and abdominal muscle function during stabilization exercises. Arch Phys Med Rehabil. 2001;82(8):10891098. doi:10.1053/apmr.2001.23819

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Okubo Y, Kaneoka K, Imai A, et al. Electromyographic analysis of transversus abdominis and lumbar multifidus using wire electrodes during lumbar stabilization exercises. J Orthop Sports Phys Ther. 2010;40(11):743750. doi:10.2519/jospt.2010.3192

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fredericson M, Wolf C. Iliotibial band syndrome in runners. Sports Med. 2005;35(5):451459. doi:10.2165/00007256-200535050-00006

  • 15.

    Merican AM, Amis AA. Iliotibial band tension affects patellofemoral and tibiofemoral kinematics. J Biomech. 2009;42(10):15391546. doi:10.1016/j.jbiomech.2009.03.041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lee JH, Cynn HS, Kwon OY, et al. Different hip rotations influence hip abductor muscles activity during isometric side-lying hip abduction in subjects with gluteus medius weakness. J Electromyogr Kinesiol. 2014;24(2):318324. doi:10.1016/j.jelekin.2014.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Criswell E. Cram’s Introduction to Surface Electromyography. 2nd ed. Burlington, MA: Jones & Bartlett Learning; 2010.

  • 18.

    Kendall FP, McCreary EK, Provance PG, Rodgers MM, Romani WA. Muscles: Testing and Function With Posture and Pain. 5th ed. Baltimore, MD: Williams & Wilkins; 2005.

    • Search Google Scholar
    • Export Citation
  • 19.

    Escamilla RF, Lewis C, Pecson A, Imamura R, Andrews JR. Muscle activation among supine, prone, and side position exercises with and without a Swiss ball. Sports Health. 2016;8(4):372379. doi:10.1177/1941738116653931

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Johnson B. The functions of the individual muscles in the lumbar part of the spinae muscle. Electrography. 1970;10(1):521.

  • 21.

    Beneck GJ, John WS, Shelby D. Postural cueing to increase lumbar lordosis increases lumbar multifidus activation during trunk stabilization exercises: electromyographic assessment using intramuscular electrodes. J Orthop Sports Phys Ther. 2016;46(4):293299. doi:10.2519/jospt.2016.6174

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Panjabi MM. The stabilizing system of the spine. Part II, neutral zone and instability hypothesis. J Spinal Discod. 1992;5(4):390397. doi:10.1097/00002517-199212000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Arokoski JP, Valta T, Kankaanpää M, Airaksinen O. Activation of lumbar paraspinal and abdominal muscles during therapeutic exercises in chronic low back pain patients. Arch Phys Med Rehabil. 2004;85(5):823832. doi:10.1016/j.apmr.2003.06.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Neumann DA. Kinesiology of the hip: a focus on muscular actions. J Orthop Sports Phys Ther. 2010;40(2):8294. doi:10.2519/jospt.2010.3025

  • 25.

    Martens M, Libbrecht P, Burssens A. Surgical treatment of iliotibial band friction syndrome. Am J Sports Med. 1989;17(5):651654. doi:10.1177/036354658901700511

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4511 1098 55
Full Text Views 72 12 3
PDF Downloads 108 18 8