Trunk Inclination During Squatting is a Better Predictor of the Knee-Extensor Moment Than Shank Inclination

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: A limitation of previous studies on squatting mechanics is that the influence of trunk and shank inclination on the knee-extensor moment (KEM) has been studied in isolation. Objective: The purpose of the current study was to determine the influence of segment orientation on the KEM during freestanding barbell squatting. Design: Repeated-measures cross sectional. Setting: University research laboratory. Participants: Sixteen healthy individuals (8 males and 8 females). Intervention: Each participant performed 8 squat conditions in which shank and trunk inclinations were manipulated. Main Outcome Measures: 3D kinematic and kinetic data were collected at 250 and 1500 Hz, respectively. Regression analysis was conducted to identify the individual relationships between the KEM and the trunk and shank inclination at 60° and 90° of knee flexion. To identify the best predictor(s) of the KEM, stepwise regression was implemented. Results: Increased shank inclination increased the KEM (P < .001, R2 = .21–.25). Conversely, increased trunk inclination decreased the KEM (P < .001, R2 = .49–.50). For the stepwise regression, trunk inclination entered first and explained the greatest variance in the KEM (all P < .001, R2 = .49–.50). Shank inclination entered second (all P < .010, R2 = .53–.54) and explained an additional 3% to 5% of the variance. Conclusions: Our results confirm that inclination of the trunk and shank have an opposing relationship with the KEM. Increased forward shank posture increases the KEM, while increased forward trunk posture decreases the KEM. However, when viewed in combination, the trunk was the superior predictor of the KEM, highlighting the fact that increased quadriceps demand created by a forward shank can be offset by trunk inclination.

The authors are with the USC Division of Biokinesiology & Physical Therapy, University of Southern California, Los Angeles, CA, USA.

Powers (powers@usc.edu) is corresponding author.
  • 1.

    Kernozek TW, Gheidi N, Zellmer M, Hove J, Heinert BL, Torry MR. Effects of anterior knee displacement during squatting on patellofemoral joint stress. J Sport Rehabil. 2018;27(3):237243. PubMed ID: 28422563 doi:10.1123/jsr.2016-0197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fry AC, Smith JC, Schilling BK. Effect of knee position on hip and knee torques during the barbell squat. J Strength Cond Res. 2003;17(4):629633. PubMed ID: 14636100

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lorenzetti S, Gulay T, Stoop M, et al. . Comparison of the angles and corresponding moments in the knee and hip during restricted and unrestricted squats. J Strength Cond Res. 2012;26(10):28292836. PubMed ID: 22801421 doi:10.1519/JSC.0b013e318267918b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Powers CM, Ho KY, Chen YJ, Souza RB, Farrokhi S. Patellofemoral joint stress during weight bearing and non-weight bearing quadriceps exercises. J Orthop Sports Phys Ther. 2014;44(5):320327. PubMed ID: 24673446 doi:10.2519/jospt.2014.4936

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wallace DA, Salem GJ, Salinas R, Powers CM. Patellofemoral joint kinetics while squatting with and without an external load. J Orthop Sports Phys Ther. 2002;32(4):141148. PubMed ID: 11949662 doi:10.2519/jospt.2002.32.4.141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Edwards S, Steele JR, Cook JL, Purdam CR, McGhee DE, Munro BJ. Characterizing patellar tendon loading during the landing phases of a stop-jump task. Scand J Med Sci Sports. 2012;22(1):211. PubMed ID: 20500557 doi:10.1111/j.1600-0838.2010.01119.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Barker-Davies RM, Roberts A, Watson J, et al. . Kinematic and kinetic differences between military patients with patellar tendinopathy and asymptomatic controls during single leg squats. Clin Biomech. 2019;62:127135. doi:10.1016/j.clinbiomech.2019.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Biscarini A, Benvenuti P, Botti F, Mastrandrea F, Zanuso S. Modelling the joint torques and loadings during squatting at the Smith machine. J Sports Sci. 2011;29(5):457469. PubMed ID: 21225486 doi:10.1080/02640414.2010.534859

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Chambers AJ, Sukits AL, McCrory JL, Cham R. The effect of obesity and gender on body segment parameters in older adults. Clin Biomech. 2010;25(2):131136. doi:10.1016/j.clinbiomech.2009.10.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Tomescu SS, Bakker R, Beach TAC, Chandrashekar N. The effects of filter cutoff frequency on musculoskeletal simulations of high-impact movements. J Appl Biomech. 2018;34(4):336341. PubMed ID: 29431559 doi:10.1123/jab.2017-0145

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Salem GJ, Powers CM. Patellofemoral joint kinetics during squatting in collegiate women athletes. Clin Biomech. 2001;16(5):424430. doi:10.1016/S0268-0033(01)00017-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175191. PubMed ID: 17695343 doi:10.3758/BF03193146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Escamilla RF, Zheng N, Macleod TD, et al. . Patellofemoral joint force and stress during the wall squat and one-leg squat. Med Sci Sports Exerc. 2009;41(4):879888. PubMed ID: 19276845 doi:10.1249/MSS.0b013e31818e7ead

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kulas AS, Hortobagyi T, DeVita P. Trunk position modulates anterior cruciate ligament forces and strains during a single-leg squat. Clin Biomech. 2012;27(1):1621. doi:10.1016/j.clinbiomech.2011.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Smith SM, Cockburn RA, Hemmerich A, Li RM, Wyss UP. Tibiofemoral joint contact forces and knee kinematics during squatting. Gait Posture. 2008;27(3):376386. PubMed ID: 17583512 doi:10.1016/j.gaitpost.2007.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Toutoungi DE, Lu TW, Leardini A, Catani F, O’Connor JJ. Cruciate ligament forces in the human knee during rehabilitation exercises. Clin Biomech. 2000;15(3):176187. doi:10.1016/S0268-0033(99)00063-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Escamilla RF, Macleod TD, Wilk KE, Paulos L, Andrews JR. Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. J Orthop Sports Phys Ther. 2012;42(3):208220. PubMed ID: 22387600 doi:10.2519/jospt.2012.3768

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bazrgari B, Shirazi-Adl A, Arjmand N. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads. Eur Spine J. 2007;16(5):687699. PubMed ID: 17103232 doi:10.1007/s00586-006-0240-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Glassbrook DJ, Helms ER, Brown SR, Storey AG. A review of the biomechanical differences between the high-bar and low-bar back-squat. J Strength Cond Res. 2017;31(9):26182634. PubMed ID: 28570490 doi:10.1519/JSC.0000000000002007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 25 25 25
Full Text Views 3 3 3
PDF Downloads 5 5 5