Neural Mobilization Short-Term Dose Effect on the Lower-Limb Flexibility and Performance in Basketball Athletes: A Randomized, Parallel, and Single-Blinded Study

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $196.00

Context: Neural mobilization is commonly used in sports, and previous studies have suggested that it has a positive impact on lower-limb flexibility and performance. However, studies exploring the effect of neural mobilization dosage are almost nonexistent. Objectives: This study aimed to assess whether 2 distinct dosages of neural gliding mobilization (4 and 8 sets of 10 repetitions) impact the flexibility and performance of both the mobilized and nonmobilized lower limb in basketball athletes differently. Design: Randomized, parallel, and single-blinded study. Setting: Amateur and professional basketball clubs. Participants: Fifty-two basketball athletes (40 men and 12 women), who were distributed into 2 groups; one received 40 (n = 28) and the other 80 repetitions (n = 24) of neural gliding mobilization. Intervention: Neural gliding mobilization applied to a single limb (the dominant limb). Main Outcome Measures: Knee extension angle for hamstring flexibility; hop tests and single-leg vertical jump for performance. Results: There was a significant main effect of time (P < .001), a significant interaction between time and limb for flexibility (P = .003), and a significant interaction between time and limb for the single-leg hop test (P = .032). No other significant main effect for any of the remaining variables was found (P > .05). Conclusions: The application of both 40 repetitions and 80 of neural gliding significantly improved lower-limb flexibility, and one was not superior to the other. Neither one dosage nor the other positively or negatively impacted the lower-limb performance of basketball athletes.

A. Pereira, Teixeira, K. Pereira, Ferreira, Marques, and Silva are with the School of Health Sciences, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal. Silva is also with the Center for Health Technology and Services Research (CINTESIS.UA), School of Health Sciences, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.

Silva (asilva@ua.pt) is corresponding author.
  • 1.

    Ellis RF, Hing WA. Neural mobilization: A systematic review of randomized controlled trials with an analysis of therapeutic efficacy. J Man Manip Ther. 2008;16(1):822. PubMed ID: 19119380 doi:10.1179/106698108790818594.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gifford L. Topical issues in pain 4—neurodynamics. Physiotherapy. 2003;89(6):386.

  • 3.

    Topp KS, Boyd BS. Structure and biomechanics of peripheral nerves: nerve responses to physical stresses and implications for physical therapist practice. Phys Ther. 2006;86(1):92109. PubMed ID: 16386065 doi:10.1093/ptj/86.1.92

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Basson A, Olivier B, Ellis R, Coppieters M, Stewart A, Mudzi W. The effectiveness of neural mobilization for neuromusculoskeletal conditions: a systematic review and meta-analysis. 2017;47(1401):593615.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Neto T, Freitas SR, Marques M, Gomes L, Andrade R. Effects of lower body quadrant neural mobilization in healthy and low back pain populations: a systematic review and meta-analysis. Musculoskelet Sci Pract. 2017;27:1422. PubMed ID: 28637597 doi:10.1016/j.msksp.2016.11.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gamelas T, Fernandes A, Magalhães I, Ferreira M, Machado S, Silva AG. Neural gliding versus neural tensioning: effects on heat and cold thresholds, pain thresholds and hand grip strength in asymptomatic individuals. J Bodyw Mov Ther. 2019;23(4):799804. PubMed ID: 31733764 doi:10.1016/j.jbmt.2019.04.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Su Y, Lim E. Does evidence support the use of neural tissue management to reduce pain and disability in nerve-related chronic musculoskeletal pain?: a systematic review with meta-analysis. Clin J Pain. 2016;32(11):9911004. PubMed ID: 26710222 doi:10.1097/AJP.0000000000000340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Ferreira J, Bebiano A, Raro D, Martins J, Silva AG. Comparative effects of tensioning and sliding neural mobilization on static postural control and lower limb hop testing in football players. J Sport Rehabil. 2019;28(8):840846. PubMed ID: 30222495 doi:10.1123/jsr.2017-0374

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Waldhelm A, Gacek M, Davis H, Saia C, Kirby B. Acute effects of neural gliding on athletic performance. Int J Sports Phys Ther. 2019;14(4):603612. PubMed ID: 31440411 doi:10.26603/ijspt20190603

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Aksoy CC, Kurt V, Okur İ, Taspınar F, Taspinar B. The immediate effect of neurodynamic techniques on jumping performance: a randomised double-blind study. J Back Musculoskelet Rehabil. 2019;1:16.

    • Search Google Scholar
    • Export Citation
  • 11.

    Kirmizigil B, Ozcaldiran B, Colakoglu M. The effects of three different stretching techniques on vertical jumping performance. J Strength Cond Res. 2014;28(5):12631271.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Fort-Vanmeerhaeghe A, Gual G, Romero-Rodriguez D, Unnitha V. Lower limb neuromuscular asymmetry in volleyball and basketball players. J Hum Kinet. 2016;50(1):135143. doi:10.1515/hukin-2015-0150

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Munro AG, Herrington LC. Between-session reliability of four hop tests and the agility T-test. J Strength Cond Res. 2011;25(5):14701477. PubMed ID: 21116200 doi:10.1519/JSC.0b013e3181d83335

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Davis S, Quinn R, Whiteman C, Williams J, Young C. Validity of four clinical tests used to measure hamstring flexibility. J Strength Cond Res. 2008;22(2):583588. PubMed ID: 18550977 doi:10.1519/JSC.0b013e31816359f2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Norris CM, Matthews M. Inter-tester reliability of a self-monitored active knee extension test. J Bodyw Mov Ther. 2005;9(4):256259. doi:10.1016/j.jbmt.2005.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Yildirim M, Tuna F, Kabayel D, Sut N. The cut-off values for the diagnosis of hamstring shortness and related factors. Balkan Med J. 2018;35(5):388393. PubMed ID: 29914231

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Neto T, Jacobsohn L, Carita AI, Oliveira R. Reliability of the active-knee-extension and straight-leg-raise tests in subjects with flexibility deficits. J Sport Rehabil. 2015;24(4):2014-0220. PubMed ID: 25364856 doi:10.1123/jsr.2014-0220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hamilton RT, Shultz SJ, Schmitz RJ, Perrin DH. Triple-hop distance as a valid predictor of lower limb strength and power. J Athl Train. 2008;43(2):144151. PubMed ID: 18345338 doi:10.4085/1062-6050-43.2.144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Reid A, Birmingham TB, Stratford PW, Alcock GK, Giffin JR. Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther. 2007;87(3):337349. PubMed ID: 17311886 doi:10.2522/ptj.20060143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kockum B, Heijne A. Hop performance and leg muscle power in athletes: reliability of a test battery. Phys Ther Sport. 2015;16(3):222227. PubMed ID: 25891995 doi:10.1016/j.ptsp.2014.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bolgla LA, Keskula DR. Reliability of lower extremity functional performance tests. J Orthop Sports Phys Ther. 1997;26(3):138142. PubMed ID: 9276854 doi:10.2519/jospt.1997.26.3.138

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lee DW, Yang SJ, Cho SI, Lee JH, Kim JG. Single-leg vertical jump test as a functional test after anterior cruciate ligament reconstruction. Knee. 2018;25(6):10161026. PubMed ID: 30115591 doi:10.1016/j.knee.2018.07.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hopper DM, Goh SC, Wentworth LA, et al. Test-retest reliability of knee rating scales and functional hop tests one year following anterior cruciate ligament reconstruction. Phys Ther Sport. 2002;3(1):1018. doi:10.1054/ptsp.2001.0094

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Meylan C, McMaster T, Cronin J, Mohammad NI, Rogers C, Deklerk M. Single-leg lateral, horizontal, and vertical jump assessment: reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J Strength Cond Res. 2009;23(4):11401147. PubMed ID: 19528866 doi:10.1519/JSC.0b013e318190f9c2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Shin S-H, Woo H. Correlation of single leg vertical jump, single leg hop, and single leg squat distances in healthy persons. Phys Ther Rehabil Sci. 2013;2(1):5761.

    • Search Google Scholar
    • Export Citation
  • 26.

    Swearingen J, Lawrence E, Stevens J, Jackson C, Waggy C, Davis DS. Correlation of single leg vertical jump, single leg hop for distance, and single leg hop for time. Phys Ther Sport. 2011;12(4):194198. PubMed ID: 22085714 doi:10.1016/j.ptsp.2011.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Rosell D, Custodio R, Márquez F, García J, Badillo J. Traditional vs. sport-specific vertical jump tests: reliability, validity, and relationship with the legs strength and sprint performance in adult and teen soccer and basketball players. J Strength Cond Res. 2017;31(1):196206. doi:10.1519/JSC.0000000000001476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Silva A, Manso A, Andrade R, Domingues V, Brandão MP, Silva AG. Quantitative in vivo longitudinal nerve excursion and strain in response to joint movement: a systematic literature review. Clin Biomech. 2014;29(8):839847. doi:10.1016/j.clinbiomech.2014.07.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Martins C, Pereira R, Fernandes I, et al. Neural gliding and neural tensioning differently impact flexibility, heat and pressure pain thresholds in asymptomatic subjects: a randomized, parallel and double-blind study. Phys Ther Sport. 2019;36:101109. PubMed ID: 30710858 doi:10.1016/j.ptsp.2019.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Richardson J. Eta squared and partial eta squared as measures of effect size in educational research. Educ Res Rev. 2011;6(2):135147. doi:10.1016/j.edurev.2010.12.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Sharma S, Balthillaya G, Rao R, Mani R. Short term effectiveness of neural sliders and neural tensioners as an adjunct to static stretchingof hamstrings on knee extension angle in healthy individuals: a randomized controlled trial. Phys Ther Sport. 2016;17:3037. PubMed ID: 26482098 doi:10.1016/j.ptsp.2015.03.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Silva L, Rocha B, Antunes J, et al. Evaluation of the pressure pain threshold after neural mobilization in individuals with sciatica. Eur J Physiother. 2013;15(3):146150. doi:10.3109/21679169.2013.831119

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 354 354 76
Full Text Views 11 11 2
PDF Downloads 17 17 3