Context: Neural mobilization is commonly used in sports, and previous studies have suggested that it has a positive impact on lower-limb flexibility and performance. However, studies exploring the effect of neural mobilization dosage are almost nonexistent. Objectives: This study aimed to assess whether 2 distinct dosages of neural gliding mobilization (4 and 8 sets of 10 repetitions) impact the flexibility and performance of both the mobilized and nonmobilized lower limb in basketball athletes differently. Design: Randomized, parallel, and single-blinded study. Setting: Amateur and professional basketball clubs. Participants: Fifty-two basketball athletes (40 men and 12 women), who were distributed into 2 groups; one received 40 (n = 28) and the other 80 repetitions (n = 24) of neural gliding mobilization. Intervention: Neural gliding mobilization applied to a single limb (the dominant limb). Main Outcome Measures: Knee extension angle for hamstring flexibility; hop tests and single-leg vertical jump for performance. Results: There was a significant main effect of time (P < .001), a significant interaction between time and limb for flexibility (P = .003), and a significant interaction between time and limb for the single-leg hop test (P = .032). No other significant main effect for any of the remaining variables was found (P > .05). Conclusions: The application of both 40 repetitions and 80 of neural gliding significantly improved lower-limb flexibility, and one was not superior to the other. Neither one dosage nor the other positively or negatively impacted the lower-limb performance of basketball athletes.