Muscle- and Region-Specific Associations Between Muscle Size and Muscular Strength During Hip Extension and Knee Flexion in the Hamstrings

Click name to view affiliation

Raki Kawama
Search for other papers by Raki Kawama in
Current site
Google Scholar
PubMed
Close
,
Masamichi Okudaira
Search for other papers by Masamichi Okudaira in
Current site
Google Scholar
PubMed
Close
,
Hirohiko Maemura
Search for other papers by Hirohiko Maemura in
Current site
Google Scholar
PubMed
Close
, and
Satoru Tanigawa
Search for other papers by Satoru Tanigawa in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Strength deficits of the hamstrings following sports injuries decrease athletic performance and increase the risk of injury recurrence. Previous studies have shown a high correlation between the muscular strength during hip-extension and knee-flexion and total muscle size of the hamstrings. However, it remains unclear which region of the individual hamstring muscles is closely associated with muscular strength. Objective: To investigate the relationship between the size of each region of the individual hamstring muscles and muscular strength during hip extension and knee flexion. Design: Within-subject repeated measures. Setting: University laboratory. Participants: Twenty healthy young male volunteers who regularly engaged in sports activities. Outcome Measures: Anatomical cross-sectional areas were acquired from the proximal, middle, and distal regions of the biceps femoris long head, biceps femoris short head, semitendinosus, and semimembranosus. Hip-extension and knee-flexion strength were measured during maximal voluntary isometric and concentric contractions (angular velocities of 60°/s and 180°/s). Results: The anatomical cross-sectional area of the distal regions in biceps femoris long head (r = .525–.642) and semitendinosus (r = .567) were significantly correlated with hip-extension strength under all conditions and only at an angular velocity of 180°/s, respectively. Meanwhile, anatomical cross-sectional areas of the distal regions in biceps femoris short head (r = .587–.684) and semimembranosus (r = .569–.576) were closely associated with knee-flexion strength under all conditions. Conclusion: These results suggest that muscle size in the distal regions of biceps femoris long head and semitendinosus greatly contributes to the production of hip-extension strength, whereas that of biceps femoris short head and semimembranosus significantly contributes to the generation of knee-flexion strength. These findings could be useful for designing training and rehabilitation programs to efficiently improve strength deficits following sports injuries such as strain injury and anterior cruciate ligament tears.

Kawama is with the Graduate School of Health and Sports Sciences, Doshisha University, Kyoto, Japan. Okudaira is with the Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan. Maemura and Tanigawa are with the Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Kawama (rkawama156413@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med. 2007;35(2):197206. PubMed ID: 17170160 doi:10.1177/0363546506294679

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during slow-speed stretching: clinical, magnetic resonance imaging, and recovery characteristics. Am J Sports Med. 2007;35(10):17161724. PubMed ID: 17567821 doi:10.1177/0363546507303563

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Silder A, Heiderscheit BC, Thelen DG, Enright T, Tuite MJ. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol. 2008;37(12):11011109. PubMed ID: 18649077 doi:10.1007/s00256-008-0546-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Opar DA, Williams MD, Timmins RG, Dear NM, Shield AJ. Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings. J Electromyogr Kinesiol. 2013;23(3):696703. PubMed ID: 23290179 doi:10.1016/j.jelekin.2012.11.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523530. PubMed ID: 23402871 doi:10.1016/j.jelekin.2012.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chechik O, Amar E, Khashan M, Lador R, Eyal G, Gold A. An international survey on anterior cruciate ligament reconstruction practices. Int Orthop. 2013;37(2):201206. PubMed ID: 22782378 doi:10.1007/s00264-012-1611-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Keays SL, Bullock-Saxton J, Keays AC, Newcombe P. Muscle strength and function before and after anterior cruciate ligament reconstruction using semitendonosus and gracilis. Knee. 2001;8(3):229234. PubMed ID: 11706731 doi:10.1016/S0968-0160(01)00099-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Makihara Y, Nishino A, Fukubayashi T, Kanamori A. Decrease of knee flexion torque in patients with ACL reconstruction: combined analysis of the architecture and function of the knee flexor muscles. Knee Surg Sports Traumatol Arthrosc. 2006;14(4):310317. PubMed ID: 16208458 doi:10.1007/s00167-005-0701-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Nomura Y, Kuramochi R, Fukubayashi T. Evaluation of hamstring muscle strength and morphology after anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2015;25(3):301307. PubMed ID: 24646218 doi:10.1111/sms.12205

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H. Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand. 2001;172(4):249255. PubMed ID: 11531646 doi:10.1046/j.1365-201x.2001.00867.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Blazevich AJ, Coleman DR, Horne S, Cannavan D. Anatomical predictors of maximum isometric and concentric knee extensor moment. Eur J Appl Physiol. 2009;105(6):869878. PubMed ID: 19153760 doi:10.1007/s00421-008-0972-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Trezise J, Blazevich AJ. Anatomical and neuromuscular determinants of strength change in previously untrained men following heavy strength training. Front Physiol. 2019;10:1001. PubMed ID: 31447693 doi:10.3389/fphys.2019.01001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Evangelidis PE, Massey GJ, Pain MT, Folland JP. Strength and size relationships of the quadriceps and hamstrings with special reference to reciprocal muscle balance. Eur J Appl Physiol. 2016;116(3):593600. PubMed ID: 26718933 doi:10.1007/s00421-015-3321-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kellis E, Sahinis C, Dafkou K, Ellinoudis A, Galanis N. Hamstring to quadriceps strength ratio and cross-sectional area of the quadriceps and hamstrings muscles assessed using extended field-of-view ultrasonography. Res Sports Med. 2021;29:2542. doi:10.1080/15438627.2020.1770250

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Masuda K, Kikuhara N, Demura S, Katsuta S, Yamanaka K. Relationship between muscle strength in various isokinetic movements and kick performance among soccer players. J Sports Med Phys Fitness. 2005;45:4452. PubMed ID: 16208290

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005;179(3):125141. PubMed ID: 15947463 doi:10.1159/000085004

  • 17.

    Arnold AS, Salinas S, Hakawa DJ, Delp SL. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput Aid Surg. 2000;5(2):108119. doi:10.3109/10929080009148877

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Visser JJ, Hoogkamer JE, Bobbert MF, Huijing PA. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol. 1990;61(5–6):453460. PubMed ID: 2079066 doi:10.1007/BF00236067

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Buford WL, Ivey FM, Malone JD, et al. Muscle balance at the knee–moment arms for the normal knee and the ACL-minus knee. IEEE Trans Rehabil Eng. 1997;5(4):367379. PubMed ID: 9422462 doi:10.1109/86.650292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Noorkoiv M, Nosaka K, Blazevich AJ. Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. Eur J Appl Physiol. 2010;109(4):631639. PubMed ID: 20191287 doi:10.1007/s00421-010-1402-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159174. PubMed ID: 843571 doi:10.2307/2529310

  • 22.

    Munro BH. Statistical Methods for Health Care Research. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

  • 23.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57:289300. doi:10.1111/j.2517-6161.1995.tb02031.x

    • Search Google Scholar
    • Export Citation
  • 24.

    Evangelidis PE, Massey GJ, Ferguson RA, Wheeler PC, Pain MTG, Folland JP. The functional significance of hamstrings composition: is it really a “fast” muscle group? Scand J Med Sci Sports. 2017;27(11):11811189. PubMed ID: 27739112 doi:10.1111/sms.12786

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Garrett WE Jr, Califf JC, Bassett FH. Histochemical correlates of hamstring injuries. Am J Sports Med. 1984;12(2):98103. PubMed ID: 6234816 doi:10.1177/036354658401200202

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Widrick JJ, Trappe SW, Costill DL, Fitts RH. Force-velocity and force-power properties of single muscle fibers from elite master runners and sedentary men. Am J Physiol Cell Physiol. 1996;271(2):C676C683. doi:10.1152/ajpcell.1996.271.2.C676

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hegyi A, Péter A, Finni T, Cronin NJ. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography. Scand J Med Sci Sports. 2018;28(3):9921000. PubMed ID: 29143379 doi:10.1111/sms.13016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Wakahara T, Fukutani A, Kawakami Y, Yanai T. Nonuniform muscle hypertrophy: its relation to muscle activation in training session. Med Sci Sports Exerc. 2013;45(11):21582165. PubMed ID: 23657165 doi:10.1249/MSS.0b013e3182995349

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6740 936 38
Full Text Views 74 26 0
PDF Downloads 86 13 0