Flexibility, Position, and Strength of the Shoulder Complex in Pediatric and Adult Amateur Tennis Athletes

in Journal of Sport Rehabilitation

Click name to view affiliation

Germanna M. Barbosa
Search for other papers by Germanna M. Barbosa in
Current site
Google Scholar
PubMed
Close
,
Larissa P. Ribeiro
Search for other papers by Larissa P. Ribeiro in
Current site
Google Scholar
PubMed
Close
,
Ana B. Nasser
Search for other papers by Ana B. Nasser in
Current site
Google Scholar
PubMed
Close
,
Gretchen D. Oliver
Search for other papers by Gretchen D. Oliver in
Current site
Google Scholar
PubMed
Close
, and
Paula R. Camargo
Search for other papers by Paula R. Camargo in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Understanding the musculoskeletal adaptations in the shoulder complex of varying ages of tennis athletes may suggest preventive protocols and conditioning and rehabilitation programs to this population. This study aimed to generate a bilateral descriptive profile of shoulder flexibility, scapular and clavicular position, and muscle strength in pediatric and adult amateur tennis athletes. The outcome measures were compared between groups and sides. The number and percentage of athletes “at risk” according to cutoff values for shoulder range of motion (ROM) were also analyzed. Design: Cross-sectional study. Methods: 36 pediatric and 28 adult amateur tennis athletes were tested. Outcome measures were ROM of shoulder flexion, abduction, internal and external rotation, posterior capsule tightness, pectoralis minor index (PMI), scapular upward rotation, clavicular elevation, and strength of the external rotators, serratus anterior, and lower trapezius of the dominant/nondominant sides. Results: Pediatric athletes had greater dominant side external rotation (P = .01) and total ROM (P = .04), increased Low Flexion test (P = .01), and decreased PMI (P = .01) compared with the adults. Bilaterally, the pediatric athletes had greater dominant side external rotation ROM (P < .01) and decreased PMI (P = .002) as compared with their nondominant side, whereas the adults displayed lower values on posterior capsule tightness (P = .01) and decreased PMI (P = .02) on their dominant side compared with their nondominant side. For the remaining outcomes, no interaction effects were observed. The cutoff values for shoulder ROM showed that several athletes were “at risk” of shoulder problems. Conclusion: Upper extremity adaptations at the shoulder are present in both pediatric and adult tennis athletes. These data can assist clinicians in better understanding the biomechanical adaptations in the shoulder of amateur tennis athletes in different age groups.

Barbosa, Ribeiro, Nasser, and Camargo are with the Laboratory of Analysis and Intervention of the Shoulder Complex, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil. Oliver is with the Sports Medicine and Movement Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA.

Camargo (prcamargo@ufscar.br) is corresponding author.
  • Collapse
  • Expand
  • 1.

    What we do—international tennis federation. Alpha Omegan. 2009;102(2):4142. doi:10.1016/j.aodf.2009.04.002

  • 2.

    Tennis Industry Association. Tennis talking points. 2019. https://cdn.ymaws.com/www.tennisindustry.org/resource/resmgr/sliders/tennistalkingpoints.pdf. Accessed May 18, 2020.

    • Search Google Scholar
    • Export Citation
  • 3.

    Cools AM, Johansson FR, Borms D, Maenhout A. Prevention of shoulder injuries in overhead athletes: a science-based approach. Brazilian J Phys Ther. 2015;19(5):331339. doi:10.1590/bjpt-rbf.2014.0109

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Cools AM, Palmans T, Johansson FR. Age-related, sport-specific adaptions of the shoulder girdle in elite adolescent tennis players. J Athl Train. 2014;49(5):647653. PubMed ID: 25098662 doi:10.4085/1062-6050-49.3.02

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cools AM, Johansson FR, Cambier DC, Velde A Vande, Palmans T, Witvrouw EE. Descriptive profile of scapulothoracic position, strength and flexibility variables in adolescent elite tennis players. Br J Sports Med. 2010;44(9):678684. PubMed ID: 20587640 doi:10.1136/bjsm.2009.070128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ellenbecker T, Roetert EP. Age specific isokinetic glenohumeral internal and external rotation strength in elite junior tennis players. J Sci Med Sport. 2003;6(1):6370. PubMed ID: 12801211 doi:10.1016/S1440-2440(03)80009-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gillet B, Begon M, Sevrez V, Berger-Vachon C, Rogowski I. Adaptive alterations in shoulder range of motion and strength in young tennis players. J Athl Train. 2017;52(2):137144. PubMed ID: 28145740 doi:10.4085/1062-6050.52.1.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kibler WB, Chandler TJ, Livingston BP, Roetert EP. Shoulder range of motion in elite tennis players: effect of age and years of tournament play. Am J Sports Med. 1996;24(3):279285. doi:10.1177/036354659602400306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Oliver GD, Downs JL, Barbosa GM, Camargo PR. Descriptive profile of shoulder range of motion and strength in youth athletes participating in overhead sports. Int J Sports Phys Ther. 2020;15(6):10901098. PubMed ID: 33344026 doi:10.26603/ijspt20201090

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Johnson JE, Fullmer JA, Nielsen CM, Johnson JK, Moorman CT. Glenohumeral internal rotation deficit and injuries: a systematic review and meta-analysis. Orthop J Sport Med. 2018;6(5):232596711877332. doi:10.1177/2325967118773322

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kibler WB, Kuhn JE, Wilk K, et al. The disabled throwing shoulder: spectrum of pathology—10-year update. Arthrosc J Arthrosc Relat Surg. 2013;29(1):141161.e26. doi:10.1016/j.arthro.2012.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Gillet B, Begon M, Diger M, Berger-Vachon C, Rogowski I. Alterations in scapulothoracic and humerothoracic kinematics during the tennis serve in adolescent players with a history of shoulder problems. Sports Biomech. 2021;20:165177. doi:10.1080/14763141.2018.1526963

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Marcondes FB, de Jesus JF, Bryk FF, de Vasconcelos RA, Fukuda TY. Posterior shoulder tightness and rotator cuff strength assessments in painful shoulders of amateur tennis players. Brazilian J Phys Ther. 2013;17(2):185193. doi:10.1590/S1413-35552012005000079

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Wilk KE, Macrina LC, Fleisig GS, et al. Deficits in glenohumeral passive range of motion increase risk of shoulder injury in professional baseball pitchers. Am J Sports Med. 2015;43(10):23792385. PubMed ID: 26272516 doi:10.1177/0363546515594380

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Clarsen B, Bahr R, Andersson SH, Munk R, Myklebust G. Reduced glenohumeral rotation, external rotation weakness and scapular dyskinesis are risk factors for shoulder injuries among elite male handball players: a prospective cohort study. Br J Sports Med. 2014;48(17):13271333. PubMed ID: 24948083 doi:10.1136/bjsports-2014-093702

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Asker M, Waldén M, Källberg H, Holm LW, Skillgate E. Preseason clinical shoulder test results and shoulder injury rate in adolescent elite handball players: a prospective study. J Orthop Sports Phys Ther. 2020;50(2):6774. PubMed ID: 31775554 doi:10.2519/jospt.2020.9044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Asker M, Brooke HL, Waldén M, et al. Risk factors for, and prevention of, shoulder injuries in overhead sports: a systematic review with best-evidence synthesis. Br J Sports Med. 2018;52(20):13121319. PubMed ID: 29581141 doi:10.1136/bjsports-2017-098254

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Fernandez-Fernandez J, Nakamura FY, Moreno-Perez V, et al. Age and sex-related upper body performance differences in competitive young tennis players. PLoS One. 2019;14(9):e0221761. PubMed ID: 31479492 doi:10.1371/journal.pone.0221761

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Nutt C, Mirkovic M, Hill R, Ranson C, Cooper S-M. Reference values for glenohumeral joint rotational range of motion in elite tennis players. Int J Sports Phys Ther. 2018;13(3):501510. PubMed ID: 30038836 doi:10.26603/ijspt20180501

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335(7624):806808. PubMed ID: 17947786 doi:10.1136/bmj.39335.541782.AD

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Weir JP. Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240. doi:10.1519/15184.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lexell JE, Downham DY. How to assess the reliability of measurements in rehabilitation. Am J Phys Med Rehabil. 2005;84(9):719723. doi:10.1097/01.phm.0000176452.17771.20

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Borstad JD, Dashottar A, Stoughton T. Validity and reliability of the Low Flexion measurement for posterior glenohumeral joint capsule tightness. Man Ther. 2015;20(6):875878. PubMed ID: 26346772 doi:10.1016/j.math.2015.08.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Borstad JD, Dashottar A. Quantifying strain on posterior shoulder tissues during 5 simulated clinical tests: a cadaver study. J Orthop Sport Phys Ther. 2011;41(2):9099. doi:10.2519/jospt.2011.3357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Rosa DP, Borstad JD, Pires ED, Camargo PR. Reliability of measuring pectoralis minor muscle resting length in subjects with and without signs of shoulder impingement. Braz J Phys Ther. 2016;20(2):176183. PubMed ID: 26982455 doi:10.1590/bjpt-rbf.2014.0146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lewis JS, Valentine RE. The pectoralis minor length test: a study of the intra-rater reliability and diagnostic accuracy in subjects with and without shoulder symptoms. BMC Musculoskelet Disord. 2007;8:1–10. doi:10.1186/1471-2474-8-64

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Camargo PR, Phadke V, Zanca GG, Ludewig PM. Concurrent validity of inclinometer measures of scapular and clavicular positions in arm elevation. Physiother Theory Pract. 2018;34(2):121130. PubMed ID: 28876163 doi:10.1080/09593985.2017.1370753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Michener LA, Boardman ND, Pidcoe PE, Frith AM. Scapular muscle tests in subjects with shoulder pain and functional loss: reliability and construct validity. Phys Ther. 2005;85(11):11281138. doi:10.1093/ptj/85.11.1128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Moreno-Pérez V, Moreside J, Barbado D, Vera-Garcia FJ. Comparison of shoulder rotation range of motion in professional tennis players with and without history of shoulder pain. Man Ther. 2015;20(2):313318. doi:10.1016/j.math.2014.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kalo K, Vogt L, Sieland J, Banzer W, Niederer D. Injury and training history are associated with glenohumeral internal rotation deficit in youth tennis athletes. BMC Musculoskelet Disord. 2020;21(1):553. doi:10.1186/s12891-020-03571-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mautner BK, Blazuk J. Overuse throwing injuries in skeletally immature athletes—diagnosis, treatment, and prevention. Curr Sports Med Rep. 2015;14(3):209214. doi:10.1249/JSR.0000000000000155

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kibler WB, Thomas SJ. Pathomechanics of the throwing shoulder. Sports Med Arthrosc. 2012;20(1):2229. doi:10.1097/JSA.0b013e3182432cf2

  • 33.

    Borstad JD. Resting position variables at the shoulder: evidence to support a posture-impairment association. Phys Ther. 2006;86(4):549557. doi:10.1093/ptj/86.4.549

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Borstad JD, Ludewig PM. The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals. J Orthop Sport Phys Ther. 2005;35(4):227238. doi:10.2519/jospt.2005.35.4.227

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Lawrence RL, Braman JP, Laprade RF, Ludewig PM. Comparison of 3-dimensional shoulder complex kinematics in individuals with and without shoulder pain, part 1: sternoclavicular, acromioclavicular, and scapulothoracic joints. J Orthop Sports Phys Ther. 2014;44(9):636645. doi:10.2519/jospt.2014.5339

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Keller RA, De Giacomo AF, Neumann JA, Limpisvasti O, Tibone JE. Glenohumeral internal rotation deficit and risk of upper extremity injury in overhead athletes: a meta-analysis and systematic review. Sports Health. 2018;10(2):125132. doi:10.1177/1941738118756577

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kekelekis A, Nikolaidis PT, Moore IS, Rosemann T, Knechtle B. Risk factors for upper limb injury in tennis players: a systematic review. Int J Environ Res Public Health. 2020;17(8):2744. doi:10.3390/ijerph17082744

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Bittencourt NFN, Meeuwisse WH, Mendonça LD, Nettel-Aguirre A, Ocarino JM, Fonseca ST. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition—narrative review and new concept. Br J Sports Med. 2016;50(21):13091314. doi:10.1136/bjsports-2015-095850

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Cools AM, Maenhout AG, Vanderstukken F, Declève P, Johansson FR, Borms D. The challenge of the sporting shoulder: from injury prevention through sport-specific rehabilitation toward return to play [published online ahead of print 2020]. Ann Phys Rehabil Med. doi:10.1016/j.rehab.2020.03.009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Mine K, Nakayama T, Milanese S, Grimmer K. Effectiveness of stretching on posterior shoulder tightness and glenohumeral internal-rotation deficit: a systematic review of randomized controlled trials. J Sport Rehabil. 2017;26(4):294305. doi:10.1123/jsr.2015-0172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Kibler WB, Chandler TJ, Shapiro R, Conuel M. Muscle activation in coupled scapulohumeral motions in the high performance tennis serve. Br J Sports Med. 2007;41(11):745749. doi:10.1136/bjsm.2007.037333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Gillet B, Begon M, Diger M, Berger-Vachon C, Rogowski I. Shoulder range of motion and strength in young competitive tennis players with and without history of shoulder problems. Phys Ther Sport. 2018;31:2228. doi:10.1016/j.ptsp.2018.01.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Gilmer GG, Gascon SS, Oliver GD. Classification of lumbopelvic-hip complex instability on kinematics amongst female team handball athletes. J Sci Med Sport. 2018;21 (8):805–810 doi:10.1016/j.jsams.2017.12.009

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4304 1750 72
Full Text Views 43 13 0
PDF Downloads 59 17 1