Reactive Strength as a Metric for Informing Return-to-Sport Decisions: A Case-Control Study

in Journal of Sport Rehabilitation

Click name to view affiliation

Jorg Teichmann
Search for other papers by Jorg Teichmann in
Current site
Google Scholar
PubMed
Close
,
Kim Hébert-Losier
Search for other papers by Kim Hébert-Losier in
Current site
Google Scholar
PubMed
Close
,
Rachel Tan
Search for other papers by Rachel Tan in
Current site
Google Scholar
PubMed
Close
,
Han Wei Lem
Search for other papers by Han Wei Lem in
Current site
Google Scholar
PubMed
Close
,
Shabana Khanum
Search for other papers by Shabana Khanum in
Current site
Google Scholar
PubMed
Close
,
Ananthi Subramaniam
Search for other papers by Ananthi Subramaniam in
Current site
Google Scholar
PubMed
Close
,
Wee-Kian Yeo
Search for other papers by Wee-Kian Yeo in
Current site
Google Scholar
PubMed
Close
,
Dietmar Schmidtbleicher
Search for other papers by Dietmar Schmidtbleicher in
Current site
Google Scholar
PubMed
Close
, and
Christopher M. Beaven
Search for other papers by Christopher M. Beaven in
Current site
Google Scholar
PubMed
Close
Restricted access

Objective: Current return-to-sport decisions are primarily based on elapsed time since surgery or injury and strength measures. Given data that show rates of successful return to competitive sport at around 55%, there is strong rationale for adopting tools that will better inform return to sport decisions. The authors’ objective was to assess reactive strength as a metric for informing return-to-sport decisions. Design: Case-control design. Methods: Fifteen elite athletes from national sports teams (23 [6.0] y) in the final phase of their return-to-sport protocol following a unilateral knee injury and 16 age-matched control athletes (22 [4.6] y) performed a unilateral isometric strength test and 24-cm drop jump test. Pairwise comparisons were used to determine differences between legs within groups and differences in interleg asymmetry between groups. Results: Strength measures did not distinguish the control from the rehabilitation group; however, clear differences in the degree of asymmetry were apparent between the control and rehabilitation groups for contact time (Cohen d = 0.56; −0.14 to 1.27; 8.2%; P = .113), flight time (d = 1.10; 0.44 to 1.76; 16.0%; P = .002), and reactive strength index (d = 1.27; 0.50 to 2.04; 22.4%; P = .002). Conclusion: Reactive strength data provide insight into functional deficits that persist into the final phase of a return-to-sport protocol. The authors’ findings support the use of dynamic assessment tools to inform return-to-sport decisions to limit potential for reinjury.

Teichmann, Tan, Lem, Khanum, Subramaniam, and Yeo are with the Sports Medicine Division, National Sports Institute, Kuala Lumpur, Malaysia. Hébert-Losier and Beaven are with the Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, University of Waikato, Tauranga, New Zealand. Schmidtbleicher is with the Department of Sport Science, Johann Wolfgang Goethe University, Frankfurt, Germany.

Beaven (martyn.beaven@waikato.ac.nz) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Creighton DW, Shrier I, Shultz R, Meeuwisse WH, Matheson GO. Return-to-play in sport: a decision-based model. Clin J Sport Med. 2010;20(5):379385. PubMed ID: 20818198 doi:10.1097/JSM.0b013e3181f3c0fe

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Shrier I. Strategic assessment of risk and risk tolerance (StARRT) framework for return-to-play decision-making. Br J Sports Med. 2015;49(20):13111315. PubMed ID: 26036678 doi:10.1136/bjsports-2014-094569

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Barber-Westin SD, Noyes FR. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy. 2011;27(12):16971705. PubMed ID: 22137326 doi:10.1016/j.arthro.2011.09.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Webster KE, Feller JA. A research update on the state of play for return to sport after anterior cruciate ligament reconstruction. J Orthop Traumatol. 2019;20(1):10.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hägglund M, Waldén M, Ekstrand J. Previous injury as a risk factor for injury in elite football: a prospective study over two consecutive seasons. Br J Sports Med. 2006;40(9):767772. PubMed ID: 16855067

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48(21):15431552.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ardern CL, Glasgow P, Schneiders A, et al. 2016 Consensus statement on return to sport from the first world congress in sports physical therapy, Bern. Br J Sports Med. 2016;50(14):853864.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hertel J, Denegar CR. A rehabilitation paradigm for restoring neuromuscular control following athletic injury. Athl Ther Today. 1998;3(5):1216.

  • 9.

    Noyes FR, Barber SD, Mangine RE. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med. 1991;19(5):513518. PubMed ID: 1962720 doi:10.1177/036354659101900518

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Liu-Ambrose T, Taunton JE, MacIntyre D, McConkey P, Khan KM. The effects of proprioceptive or strength training on the neuromuscular function of the ACL reconstructed knee: a randomized clinical trial. Scand J Med Sci Sports. 2003;13(2):115123. PubMed ID: 12641643 doi:10.1034/j.1600-0838.2003.02113.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Colby SM, Hintermeister RA, Torry MR, Steadman JR. Lower limb stability with ACL impairment. J Orthop Sports Phys Ther. 1999;29(8):444454. PubMed ID: 10444734 doi:10.2519/jospt.1999.29.8.444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Thomeé R, Neeter C, Gustavsson A, et al. Variability in leg muscle power and hop performance after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2012;20(6):11431151. PubMed ID: 22314862 doi:10.1007/s00167-012-1912-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Thomeé R, Kaplan Y, Kvist J, et al. Muscle strength and hop performance criteria prior to return to sports after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19(11):17981805. PubMed ID: 21932078 doi:10.1007/s00167-011-1669-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Sousa PL, Krych AJ, Cates RA, Levy BA, Stuart MJ, Dahm DL. Return to sport: does excellent 6-month strength and function following ACL reconstruction predict midterm outcomes? Knee Surg Sports Traumatol Arthrosc. 2015;25(5):13561363. PubMed ID: 26205480 doi:10.1007/s00167-015-3697-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kyritsis P, Bahr R, Landreau P, Miladi R, Witvrouw E. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med. 2016;50(15):946951. PubMed ID: 27215935 doi:10.1136/bjsports-2015-095908

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Burgi CR, Peters S, Ardern CL, et al. Which criteria are used to clear patients to return to sport after primary ACL reconstruction? A scoping review. Br J Sports Med. 2019;53(18):11541161. PubMed ID: 30712009 doi:10.1136/bjsports-2018-099982

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Taube W, Leukel C, Lauber B, Gollhofer A. The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training. Scand J Med Sci Sports. 2012;22(5):671683. PubMed ID: 21457355 doi:10.1111/j.1600-0838.2011.01293.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Angelozzi M, Madama M, Corsica C, et al. Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):772780. PubMed ID: 22814219 doi:10.2519/jospt.2012.3780

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kristianslund E, Krosshaug T. Comparison of drop jumps and sport-specific sidestep cutting: implications for anterior cruciate ligament injury risk screening. Am J Sports Med. 2013;41(3):684688. PubMed ID: 23287439 doi:10.1177/0363546512472043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cunningham DJ, Shearer DA, Drawer S, et al. Relationships between physical qualities and key performance indicators during match-play in senior international rugby union players. PLoS One. 2018;13(9):e0202811. PubMed ID: 30208066 doi:10.1371/journal.pone.0202811

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Behm DG, Kibele A. Effects of differing intensities of static stretching on jump performance. Eur J Appl Physiol. 2007;101(5):587594. PubMed ID: 17674024 doi:10.1007/s00421-007-0533-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bishop C, Read P, Chavda S, Jarvis P, Turner A. Using unilateral strength, power and reactive strength tests to detect the magnitude and direction of asymmetry: a test-retest design. Sports. 2019;7(3):58. doi:10.3390/sports7030058

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc. 1998;30(4):556569. PubMed ID: 9565938 doi:10.1097/00005768-199804000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. Hillside, NJ: Lawrence Erlbaum Associates; 1988.

  • 25.

    Kvist J. Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med. 2004;34(4):269280. PubMed ID: 15049718 doi:10.2165/00007256-200434040-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Fitzgerald GK, Lephart SM, Hwang JH, Wainner RS. Hop tests as predictors of dynamic knee stability. J Orthop Sports Phys Ther. 2001;31(10):588597. PubMed ID: 11665746 doi:10.2519/jospt.2001.31.10.588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Urbach D, Nebelung W, Weiler HT, Awiszus F. Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med Sci Sports Exerc. 1999;31(12):16911696. PubMed ID: 10613416 doi:10.1097/00005768-199912000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Beischer S, Gustavsson L, Senorski EH, et al. Young athletes who return to sport before 9 months after anterior cruciate ligament reconstruction have a rate of new injury 7 times that of those who delay return. J Orthop Sports Phys Ther. 2020;50(2):8390. PubMed ID: 32005095 doi:10.2519/jospt.2020.9071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hernández-Davó JL, Sabido R, Moya-Ramón M, Blazevich AJ. Load knowledge reduces rapid force production and muscle activation during maximal-effort concentric lifts. Eur J Appl Physiol. 2015;115(12):25712581. PubMed ID: 26433597 doi:10.1007/s00421-015-3276-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Myer GD, Schmitt LC, Brent JL, et al. Utilization of modified NFL combine testing to identify functional deficits in athletes following ACL reconstruction. J Orthop Sports Phys Ther. 2011;41(6):377387. PubMed ID: 21289456 doi:10.2519/jospt.2011.3547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804808. PubMed ID: 27162233 doi:10.1136/bjsports-2016-096031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Douglas J, Pearson S, Ross A, McGuigan M. The kinetic determinants of reactive strength in highly trained sprint athletes. J Str Cond Res. 2018;32(6):15621570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Leukel C, Taube W, Gruber M, Hodapp M, Gollhofer A. Influence of falling height on the excitability of the soleus H-reflex during drop-jumps. Acta Physiol. 2008;192(4):569576. doi:10.1111/j.1748-1716.2007.01762.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Baumeister J, Reinecke K, Weiss M. Changed cortical activity after anterior cruciate ligament reconstruction in a joint position paradigm: an EEG study. Scand J Med Sci Sports. 2008;18(4):473484. PubMed ID: 18067525 doi:10.1111/j.1600-0838.2007.00702.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Beard DJ, Kyberd PJ, Fergusson CM, Dodd CA. Proprioception after rupture of the anterior cruciate ligament. An objective indication of the need for surgery? J Bone Joint Surg Br. 1993;75(2):311315. PubMed ID: 8444956 doi:10.1302/0301-620X.75B2.8444956

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hébert-Losier K, Pini A, Vantini S, et al. One-leg hop kinematics 20 years following anterior cruciate ligament rupture: data revisited using functional data analysis. Clin Biomech. 2015;30(10):11531161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Rosen A, Swanik C, Thomas S, Glutting J, Knight C, Kaminski TW. Differences in lateral drop jumps from an unknown height among individuals with functional ankle instability. J Athl Train. 2013;48(6):773781. PubMed ID: 23952040 doi:10.4085/1062-6050-48.5.05

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Haynes T, Bishop C, Antrobus M, Brazier J. The validity and reliability of the my jump 2 app for measuring the reactive strength index and drop jump performance. J Sports Med Phys Fitness. 2019;59(2):253258. PubMed ID: 29589412 doi:10.23736/S0022-4707.18.08195-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Kaplan Y, Witvrouw E. When is it safe to return to sport after ACL reconstruction? Reviewing the criteria. Sports Health. 2019;11(4):301305.

  • 40.

    Logerstedt D, Grindem H, Lynch A, et al. Single-legged hop tests as predictors of self-reported knee function after anterior cruciate ligament reconstruction: the Delaware-Oslo ACL cohort study. Am J Sports Med. 2012;40(10):23482356.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Wellsandt E, Failla MJ, Snyder-Mackler L. Limb symmetry indexes can overestimate knee function after anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2017;47(5):334338. PubMed ID: 28355978 doi:10.2519/jospt.2017.7285

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Webster KE, Hewett TE. What is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis. Sports Med. 2019;49(6):917929. PubMed ID: 30905035 doi:10.1007/s40279-019-01093-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):19681978. PubMed ID: 20702858 doi:10.1177/0363546510376053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Teichmann J, Tan R, Hébert-Losier K, et al. Effectiveness of an unexpected disturbance program in the early stage of rehabilitation in athletes with unilateral knee ligament injury. J Sport Rehabil. 2021;30(1):4348. doi:10.1123/jsr.2019-0265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Flanigan DC, Everhart JS, Pedroza A, Smith T, Kaeding CC. Fear of reinjury (kinesiophobia) and persistent knee symptoms are common factors for lack of return to sport after anterior cruciate ligament reconstruction. Arthroscopy. 2013;29(8):13221329. PubMed ID: 23906272 doi:10.1016/j.arthro.2013.05.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Sonesson S, Kvist J, Ardern C, Osterberg A, Silbernagel KG. Psychological factors are important to return to pre-injury sport activity after anterior cruciate ligament reconstruction: expect and motivate to satisfy. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):13751384. PubMed ID: 27562372 doi:10.1007/s00167-016-4294-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2987 2774 142
Full Text Views 576 575 191
PDF Downloads 221 219 53