The Effect of Low-Load Resistance Training on Skeletal Muscle Hypertrophy in Trained Men: A Critically Appraised Topic

in Journal of Sport Rehabilitation

Click name to view affiliation

Nick Dobson
Search for other papers by Nick Dobson in
Current site
Google Scholar
PubMed
Close
Restricted access

Clinical Scenario: Resistance training (RT) programs promote skeletal muscle hypertrophy through the progressive physiological stress applied to an individual. Currently, the vast majority of studies regarding the hypertrophic response to RT have focused on either sedentary or untrained individuals. This critically appraised topic focuses on the hypertrophic response to high- and low-load RT in resistance-trained men. Clinical Question: In experienced male weightlifters, does high-load RT lead to greater increases in muscle mass than low-load RT? Summary of Key Findings: Six studies met the inclusion criteria, while 4 studies were included in the analysis. Each of the 4 studies showed that low-load RT elicited hypertrophic gains similar to high-load RT when sets were taken to failure. Three of the studies were not volume equated, indicating a dose–response relationship between training volume-load and skeletal muscle hypertrophy. One of the studies was volume equated, indicating that skeletal muscle hypertrophy could be achieved at levels comparable to those observed in high-load protocols as a result of high levels of metabolic stress and the concomitant recruitment of high-threshold motor units that can occur during fatiguing contractions. Clinical Bottom Line: Evidence suggests that low-load training produces hypertrophic gains similar to those observed in high-load RT protocols when sets are taken to failure in resistance-trained men. Strength of Recommendation: There is moderate to strong evidence to suggest that low-load RT elicits hypertrophic gains similar to those observed in high-load RT protocols when sets are taken to failure in resistance-trained men.

Dobson (Lepageou39@gmail.com) is with The University of Oklahoma, Norman, OK, USA.

  • Collapse
  • Expand
  • 1.

    Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):28572872. PubMed ID: 20847704 doi:10.1519/JSC.0b013e3181e840f3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Srikanthan P, Horwich TB, Tseng CH. Relation of muscle mass and fat mass to cardiovascular disease mortality. Am J Cardiol. 2016;117(8):13551360. PubMed ID: 26949037 doi:10.1016/j.amjcard.2016.01.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Son JW, Lee SS, Kim SR, et al. Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: findings from the KoGES. Diabetologia. 2017;60:865872. doi:10.1007/s00125-016-4196-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Burrows R, Correa-Burrows P, Reyes M, Blanco E, Albala C, Gagahan S. Low muscle mass is associated with cardiometabolic risk regardless of nutritional status in adolescents: a cross-sectional study in Chilean birth cohort. Pediatr Diabetes. 2017;18:895902. doi:10.1111/pedi.12505

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Krzysztofik M, Wilk M, Wojdala G, Golas A. Maximizing muscle hypertrophy: a systematic review of advanced resistance training techniques and methods. Int J Environ Res Public Health. 2019;16(24):4897. PubMed ID: 31817252 doi:10.3390/ijerph16244897

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Volpi E, Nazemi R, Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care. 2004;7(4):405410. PubMed ID: 15192443

  • 7.

    Coffey VJ, Zhong Z, Shield A, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20(1):190192. PubMed ID: 16267123 doi:10.1096/fj.05-4809fje

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Schoenfeld BJ, Aragon AA, Krieger JW. The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. J Int Soc Sports Nutr. 2013;10:53. PubMed ID: 24299050 doi:10.1186/1550-2783-10-53

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Schoenfeld BJ, Contreras B, Krieger J, et al. Resistance training volume enhances muscle hypertrophy but not strength in trained men. Med Sci Sports Exerc. 2019;51(1):94103. PubMed ID: 30153194 doi:10.1249/MSS.0000000000001764

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sports Sci. 2017;35(11):10731082. PubMed ID: 27433992 doi:10.1080/02640414.2016.1210197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Heaselgrave SR, Blacker J, Smeuninx B, McKendry J, Breen L. Dose-response relationship of weekly resistance-training volume and frequency on muscular adaptations in trained men. Int J Sports Physiol Perform. 2019;14(3):360368. PubMed ID: 30160627 doi:10.1123/ijspp.2018-0427

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Holm L, Reitelseder S, Pedersen TG, et al. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol. 2008;105(5):14541461. PubMed ID: 18787090 doi:10.1152/japplphysiol.90538.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Haun CT, Mumford PW, Roberson PA, et al. Molecular, neuromuscular, and recovery responses to light versus heavy resistance exercise in young men. Physiol Rep. 2017;5(18):e13457. PubMed ID: 28963127 doi:10.14814/phy2.13457

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lacerda LT, Marra-Lopes RO, Diniz RCR, et al. Is performing repetitions to failure less important than volume for muscle hypertrophy and strength? J Strength Cond Res. 2020;34(5):12371248. PubMed ID: 31809457 doi:10.1519/JSC.0000000000003438

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Schoenfeld BJ, Grgic J. Does training to failure maximize muscle hypertrophy? Strength Cond J. 2019;41(5):108113. doi:10.1519/SSC.0000000000000473

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Marcotte GR, West DWD, Baar K. The molecular basis for load-induced skeletal muscle hypertrophy. Calcif Tissue Int. 2015;96(3):196210. PubMed ID: 25359125 doi:10.1007/s00223-014-9925-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nobrega SR, Libardi CA. Is resistance training to muscular failure necessary? Front Physiol. 2016;7: 10. PubMed ID: 26858654 doi:10.3389/fphys.2016.00010

  • 18.

    Mitchell CJ, Churchward-Venne TA, West DWD, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. 2012;113(1):7177. PubMed ID: 22518835 doi:10.1152/japplphysiol.00307.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Vigotsky AD, Beardsley C, Contreras B, Steele J, Ogborn D, Phillips SM. Greater electromyographic motor unit recruitment and ‘hypertrophic potential’ cannot be inferred. J Strength Cond Res. 2015;31(1):e1e4. doi:10.1519/JSC.0000000000001249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wan J, Qin Z, Wang P, Sun Y, Lu X. Muscle fatigue: general understanding and treatment. Exp Mol Med. 2017;49(10):e384. PubMed ID: 28983090 doi:10.1038/emm.2017.194

  • 21.

    Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci. 1938;126(843):136195.

  • 22.

    de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aus J Physiother. 2009;55(2):129133. PubMed ID: 19463084 doi:10.1016/s0004-9514(09)70043-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. Oxford, England: Oxford Centre for Evidence-Based Medicine. https://www.cebm.net/index.aspx?o+5653. Accessed November 23, 2020.

    • Search Google Scholar
    • Export Citation
  • 24.

    Schoenfeld BJ, Peterson MD, Ogborn D, Contreras B, Sonmez GT. Effects of low- vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. J Strength Cond Res. 2015;29(10):29542963. PubMed ID: 25853914 doi:10.1519/JSC.0000000000000958

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Morton RW, Oikawa SY, Wavell CG, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol. 2016;121(1):129138. PubMed ID: 27174923 doi:10.1152/japplphysiol.00154.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Schoenfeld BJ, Ratamess NA, Peterson MD, Sonmez GT, Alvar BA. Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J Strength Cond Res. 2014;28(10):29092918. PubMed ID: 24714538 doi:10.1519/JSC.0000000000000480

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Schoenfeld BJ, Contreras B, Vigotsky AD, Peterson M. Differential effects of heavy versus moderate loads on measures of strength and hypertrophy in resistance-trained men. J Sports Sci Med. 2016;15(4):715722. PubMed ID: 27928218

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Fink J, Kikuchi N, Yoshida S, Terada K, Nakazato K. Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development. Springerplus. 2016;5(1):698. PubMed ID: 27350928 doi:10.1186/s40064-016-2333-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Roberts MD, Haun CT, Mobley CB, et al. Physiological differences between low versus high skeletal muscle hypertrophic responders to resistance exercise training: current perspectives and future research directions. Front Physiol. 2018;8:834. PubMed ID: 30022953 doi:10.3389/fphys.2018.00834

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687708. PubMed ID: 19204579 doi:10.1249/MSS.0b013e3181915670

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):5060. PubMed ID: 12436270 doi:10.1007/s00421-002-0681-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Eichelberger TD, Bilodeau M. Central fatigue of the first dorsal interosseus muscle during low-force and high-force sustained submaximal contractions. Clin Physiol Funct Imaging. 2007;27(5):298304. PubMed ID: 17697026 doi:10.1111/j.1475-097X.2007.0075

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Schoenfeld BJ, Pope ZK, Benik FM, et al. Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res. 2016;30(7):18051812. doi:10.1519/JSC.0000000000001272

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Carroll TJ, Taylor JL, Gandevia SC. Recovery of central and peripheral neuromuscular fatigue after exercise. J Appl Physiol. 2017;122(5):10681076. PubMed ID: 27932676 doi:10.1152/japplphysiol.00775.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3860 3796 293
Full Text Views 42 41 3
PDF Downloads 50 48 1