Return to Play Following COVID-19 Infection—A Systematic Review of Current Evidence

Click name to view affiliation

Martin S. Davey
Search for other papers by Martin S. Davey in
Current site
Google Scholar
PubMed
Close
,
Matthew G. Davey
Search for other papers by Matthew G. Davey in
Current site
Google Scholar
PubMed
Close
,
Robert Hurley
Search for other papers by Robert Hurley in
Current site
Google Scholar
PubMed
Close
,
Eoghan T. Hurley
Search for other papers by Eoghan T. Hurley in
Current site
Google Scholar
PubMed
Close
, and
Leo Pauzenberger
Search for other papers by Leo Pauzenberger in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: The COVID-19 pandemic has had catastrophic impact on a global scale, affecting people from all walks of life including elite athletes. Objectives: The purpose of this study was to evaluate the reported rates of return to play (RTP) in conjunction with the expert-derived guidelines previously recommended to enable safe RTP post COVID-19 infection. Evidence Acquisition: Two independent reviewers searched the literature based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, utilizing the MEDLINE, Embase, and Scopus databases. Only studies that reported rates of RTP and/or recommended guidelines for safe RTP were included. Evidence Synthesis: Overall, 17 studies (3 level III and 14 level V) were included. A total of 3 studies reported rates of RTP in a total of 1255 athletes and 623 officials; 72 (30 symptomatic) were infected with COVID-19, 100% of whom were able to RTP post COVID-19 infection. Of the 14 studies recommending guidelines for safe RTP, 3 and 9 studies recommended 7 and 14 days of rest in isolation respectively for asymptomatic patients with COVID-19 infection, prior to safe RTP. In contrast, 7 studies recommended 3 to 6 months of rest (following 14 d isolation) in cases of COVID-19-induced myocarditis as a safe timeframe for safe RTP. Of the 11 studies reporting on whether blanket testing prior to RTP was recommended, only 7 studies recommended a negative test result as mandatory prior to RTP for athletes previously infected with COVID-19. Conclusions: Although excellent rates of RTP have been reported for elite athletes post COVID-19 infection, discrepancies in recommended rest periods, requirement for mandatory negative test results, and the magnitude of screening investigations required continue to exist in the literature, with a need for further standardized international guidelines required in future. Level of Evidence: Level V; systematic review of all forms of evidence.

M.S. Davey, M.G. Davey, and R. Hurley are with Galway University Hospitals, Galway, Ireland. M.S. Davey, M.G. Davey, R. Hurley, and E.T. Hurley are with the Royal College of Surgeons in Ireland, Dublin, Ireland. M.S. Davey, E.T. Hurley, and Pauzenberger are with the Sports Surgery Clinic, Dublin, Ireland.

M.S. Davey (martindavey@rcsi.ie) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Hamer M, Kivimäki M, Gale CR, et al. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: a community-based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020;87:184187. doi:10.1016/j.bbi.2020.05.059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kakodkar P, Kaka N, Baig MN. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus. 2020;12(4):e7560. PubMed ID: 32269893 doi:10.7759/cureus.7560

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Congiusta DV, Otero K, Ippolito J, Thomson J, Beebe KS. A new role for orthopaedic surgeons: ongoing changes, lessons learned, and perspectives from a level I trauma center during the COVID-19 pandemic. J Should Elbow Surg. 2020;29(10):19511956. doi:10.1016/j.jse.2020.07.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Davey MS, Cassidy JT, Lyons RF, et al. Changes to training practices during a pandemic—the experience of the Irish national trauma & orthopaedic training scheme. Injury. 2020;51(10):20872090. PubMed ID: 32654851 doi:10.1016/j.injury.2020.07.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Prem K, Liu Y, Russell TW, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Heal. 2020;5(5):e261e270. doi:10.1016/S2468-2667(20)30073-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Stokes DC. Senior medical students in the COVID-19 response: an opportunity to be proactive. Acad Emerg Med. 2020;27(4):343345. PubMed ID: 32215977 doi:10.1111/acem.13972

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Yeo TJ. Sport and exercise during and beyond the COVID-19 pandemic. Eur J Prevent Cardiol. 2020;27(12):12391241. doi:10.1177/2047487320933260

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Carmody S, Murray A, Borodina M, Gouttebarge V, Massey A. When can professional sport recommence safely during the COVID-19 pandemic? Risk assessment and factors to consider. Br J Sports Med. 2020;54(16):946948. PubMed ID: 32381501 doi:10.1136/bjsports-2020-102539

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wright JG, Swiontkowski MF, Heckman JD. Introducing levels of evidence to the journal. J Bone Joint Surg Am. 2003;85(1):13. PubMed ID: 12533564 doi:10.2106/00004623-200301000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Robertson C, Ramsay C, Gurung T, et al. Practicalities of using a modified version of the Cochrane Collaboration risk of bias tool for randomised and non-randomised study designs applied in a health technology assessment setting. Res Synth Meth. 2014;5(3):200211. doi:10.1002/jrsm.1102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Baggish A, Drezner JA, Kim J, et al. Resurgence of sport in the wake of COVID-19: cardiac considerations in competitive athletes. Br J Sports Med. 2020;54(19):11301131. PubMed ID: 32561518 doi:10.1136/bjsports-2020-102516

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bhatia RT, Marwaha S, Malhotra A, et al. Exercise in the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) era: a question and answer session with the experts endorsed by the section of sports cardiology & exercise of the European Association of Preventive Cardiology (EAPC). Eur J Prevent Cardiol. 2020;27(12):12421251. doi:10.1177/2047487320930596

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Dores H, Cardim N. Return to play after COVID-19: a sport cardiologist’s view. Br J Sports Med. 2020;54(19):11321133. PubMed ID: 32381502 doi:10.1136/bjsports-2020-102482

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gervasi SF, Pengue L, Damato L, et al. Is extensive cardiopulmonary screening useful in athletes with previous asymptomatic or mild SARS-CoV-2 infection? Br J Sports Med. 2021;55(1):5461. PubMed ID: 33020140 doi:10.1136/bjsports-2020-102789

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hurwitz B, Issa O. Management and treatment of myocarditis in athletes. Curr Treatment Opt Cardiovasc Med. 2020;22(12):65. doi:10.1007/s11936-020-00875-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Jewson J, McNamara A, Fitzpatrick J. Life after COVID-19: the importance of a safe return to physical activity. Austral J Gen Pract. 2020;49(suppl 40).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Manferdelli G, Bishop DJ, Franchi MV, et al. Recommendations for altitude training programming to preserve athletes’ health after the COVID-19 pandemic. Br J Sports Med. 2020;54(20):11841186. PubMed ID: 32532846 doi:10.1136/bjsports-2020-102561

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Meyer T, Mack D, Donde K, et al. Successful return to professional men’s football (soccer) competition after the COVID-19 shutdown: a cohort study in the German Bundesliga. Br J Sports Med. 2021;55(1):6266. PubMed ID: 32972979 doi:10.1136/bjsports-2020-103150

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Murray MT, Riggs MA, Engelthaler DM, et al. Mitigating a COVID-19 outbreak among major league baseball players—United States, 2020. MMWR Morbid Mortal Weekly Report. 2020;69(42):15421546. doi:10.15585/mmwr.mm6942a4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Pelliccia A. Return to play after the COVID-19 pandemic: a commentary by the Editor in Chief. J Sports Med Phys Fitness. 2020;60(5):675676. PubMed ID: 32438782 doi:10.23736/S0022-4707.20.11137-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Phelan D, Kim JH, Chung EH. A game plan for the resumption of sport and exercise after coronavirus disease 2019 (COVID-19) infection. JAMA cardiology. 2020;5(10):10851086. PubMed ID: 32402054 doi:10.1001/jamacardio.2020.2136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Phelan D, Kim JH, Elliott MD, et al. Screening of potential cardiac involvement in competitive athletes recovering from COVID-19: an expert consensus statement. JACC Cardiovascular Imaging. 2020;13(12):26352652. PubMed ID: 33303102 doi:10.1016/j.jcmg.2020.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Santos-Ferreira D, Tomás R, Dores H. Return-to-play guidelines for athletes after COVID-19 infection. JAMA Cardio. 2021;6(4):478479. doi:10.1001/jamacardio.2020.5345

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Schellhorn P, Klingel K, Burgstahler C. Return to sports after COVID-19 infection. Eur Heart J. 2020;41(46):43824384. PubMed ID: 32432700 doi:10.1093/eurheartj/ehaa448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Stokes KA, Jones B, Bennett M, et al. Returning to play after prolonged training restrictions in professional collision sports. Int J Sports Med. 2020;41(13):895911. PubMed ID: 32483768 doi:10.1055/a-1180-3692

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Verwoert GC, de Vries ST, Bijsterveld N, et al. Return to sports after COVID-19: a position paper from the Dutch Sports Cardiology Section of the Netherlands Society of Cardiology. Neth Heart J. 2020;28(7–8):391395. PubMed ID: 32662058 doi:10.1007/s12471-020-01469-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Wilson MG, Hull JH, Rogers J, et al. Cardiorespiratory considerations for return-to-play in elite athletes after COVID-19 infection: a practical guide for sport and exercise medicine physicians. Br J Sports Med. 2020;54(19):11571161. PubMed ID: 32878870 doi:10.1136/bjsports-2020-102710

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Wong AY, Ling SK, Louie LH, et al. Impact of the COVID-19 pandemic on sports and exercise. Asia-Pacific J Sports Med Arthrosc Rehab Technol. 2020;22:3944.

    • Search Google Scholar
    • Export Citation
  • 29.

    Davey MS, Coveney E, Rowan F, et al. Virtual fracture clinics in orthopaedic surgery—a systematic review of current evidence. Injury. 2020;51(12):27572762. PubMed ID: 33162011 doi:10.1016/j.injury.2020.11.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Angosto S, Berengüí R, Vegara-Ferri JM, et al. Motives and commitment to sport in amateurs during confinement: a segmentation study. Int J Envir Res Pub Heal. 2020;17(20):7398. doi:10.3390/ijerph17207398

    • Search Google Scholar
    • Export Citation
  • 31.

    Hughes D, Saw R, Perera NKP, et al. The Australian Institute of Sport framework for rebooting sport in a COVID-19 environment. J Sci Med Sport. 2020;23(7):639663. PubMed ID: 32451268 doi:10.1016/j.jsams.2020.05.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Hughes H, Macken M, Butler J, et al. Uncomfortably numb: suicide and the psychological undercurrent of COVID-19. Irish J Psych Med. 2020;37(3):159160. doi:10.1017/ipm.2020.49

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;251(3):228248. PubMed ID: 32418199 doi:10.1002/path.5471

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Greene DN, Wu AHB, Jaffe AS. Return-to-play guidelines for athletes after COVID-19 infection. JAMA Cardiol. 2021;6(4):479. PubMed ID: 33146670 doi:10.1001/jamacardio.2020.5348

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5439 524 49
Full Text Views 512 39 0
PDF Downloads 369 10 0