Effects of Kinesio Taping on Muscle Contractile Properties: Assessment Using Tensiomyography

Click name to view affiliation

Seda Yildiz
Search for other papers by Seda Yildiz in
Current site
Google Scholar
PubMed
Close
,
Uluç Pamuk
Search for other papers by Uluç Pamuk in
Current site
Google Scholar
PubMed
Close
,
Gul Baltaci
Search for other papers by Gul Baltaci in
Current site
Google Scholar
PubMed
Close
, and
Can A. Yucesoy
Search for other papers by Can A. Yucesoy in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Although functional effects of kinesio taping (KT) have been widely studied, its effects on contractile properties of the target muscle remain unclear. Tensiomyography is suitable for quantifying muscle stiffness and rate of force development upon imposed twitch contraction. Objective: To test the hypothesis that KT has effects on contractile properties of targeted muscle using tensiomyography. Design: Prospective cohort study. Settings: Performance laboratory of a sports rehabilitation center. Participants: A total of 11 healthy volunteers. Interventions: Tensiomyography measurements before KT facilitation technique applied (pre-KT), 45 minutes, and 24 hours after KT (post-KT1 and post-KT2, respectively) without removing the tape. Main Outcome Measures: Maximal radial displacement, contraction time, delay time, sustain time, relaxation time, and velocity of contraction. Results: Significant effects were shown for maximal radial displacement (P = .004), contraction time (P = .013), relaxation time (P = .035), and velocity of contraction (P = .0033), but not for delay time (P = .060) and sustain time (P = .078). Post hoc testing indicated a significant decrease in maximal radial displacement for post-KT1 only (from 6.33 [1.46] to 4.87 [2.14] mm), and a significant increase in contraction time for both post-KT1 and post-KT2 (from 30.87 [11.39] to 39.71 [13.49] ms, and 37.41 [14.73] ms, respectively). Post hoc testing also showed a significant decrease in relaxation time for post-KT2 (from 65.97 [53.43] to 47.45 [38.12] ms), and a significant decrease in velocity of contraction for both post-KT1 and post-KT2 (from 0.22 [0.08] to 0.15 [0.09] mm/s, and 0.16 [0.07] mm/s), respectively. Conclusion: The findings indicate that KT leads to an increased muscle stiffness and a reduced muscle rate of force production despite the facilitation technique applied.

Yildiz, Pamuk, and Yucesoy are with the Biomedical Engineering Institute, Boğaziçi University, Istanbul, Turkey. Pamuk is with Istinye University, Faculty of Engineering and Natural Science, Department of Biomedical Engineering, Istanbul, Turkey. Baltaci is with Eastern Mediterranean University, Gazimagusa, Cyprus; and Guven Private Hospital, Department of Physiotherapy and Rehabilitation, Ankara, Turkey.

Yucesoy (can.yucesoy@boun.edu.tr) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Bassett KT, Lingman SA, Ellis RF. The use and treatment efficacy of kinaesthetic taping for musculoskeletal conditions: a systematic review. NZJ Physiother. 2010;(38):5662.

    • Search Google Scholar
    • Export Citation
  • 2.

    Harput G, Guney H, Toprak U, Colakoglu F, Baltaci G. Acute effects of scapular kinesio taping® on shoulder rotator strength, ROM and acromiohumeral distance in asymptomatic overhead athletes. J Sports Med Phys Fitness. 2017;57(11):14791485. PubMed ID: 27391411 doi:10.23736/S0022-4707.16.06583-X

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bischoff L, Babisch C, Babisch J, et al. Effects on proprioception by kinesio taping of the knee after anterior cruciate ligament rupture. Eur J Orthop Surg Traumatol. 2018;28:11571164. doi:10.1007/s00590-018-2167-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gusella A, Bettuolo M, Contiero F, Volpe G. Kinesiologic taping and muscular activity: a myofascial hypothesis and a randomised, blinded trial on healthy individuals. J Bodyw Mov Ther. 2014;18(3):405411. PubMed ID: 25042311 doi:10.1016/j.jbmt.2013.11.007

    • Search Google Scholar
    • Export Citation
  • 5.

    Słupik A, Dwornik M, Białoszewski D, Zych E. Effect of kinesio taping on bioelectrical activity of vastus medialis muscle. Preliminary report. Ortop Traumatol Rehabil. 2007;9(6):644651. PubMed ID: 18227756

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kase K, Wallis J, Kase T. Clinical Therapeutic Applications of the Kinesio Taping Method. 3rd ed. Albuquerque, NM: Kinesio Taping Association International; 2013.

    • Search Google Scholar
    • Export Citation
  • 7.

    Pamuk U, Yucesoy CA. MRI analyses show that kinesio taping affects much more than just the targeted superficial tissues and causes heterogeneous deformations within the whole limb. J Biomech. 2015;48(16):42624270. PubMed ID: 26556717 doi:10.1016/j.jbiomech.2015.10.036

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hsu Y-H, Chen W-Y, Lin H-C, Wang WTJ, Shih Y-F. The effects of taping on scapular kinematics and muscle performance in baseball players with shoulder impingement syndrome. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol. 2009;19(6):10921099. doi:10.1016/j.jelekin.2008.11.003

    • Search Google Scholar
    • Export Citation
  • 9.

    Grześkowiak M, Krawiecki Z, Łabędź W, Kaczmarczyk J, Lewandowski J, Łochyński D. Short-term effects of kinesio taping® on electromyographic characteristics of paraspinal muscles, pain, and disability in patients with lumbar disk herniation. J Sport Rehabil. 2019;28(5):402412. PubMed ID: 29405872 doi:10.1123/jsr.2017-0086

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lins CAA, Neto FL, Amorim ABC, Macedo LB, Brasileiro JS. Kinesio Taping® does not alter neuromuscular performance of femoral quadriceps or lower limb function in healthy subjects: randomized, blind, controlled, clinical trial. Man Ther. 2013;18(1):4145. PubMed ID: 22796389 doi:10.1016/j.math.2012.06.009

    • Search Google Scholar
    • Export Citation
  • 11.

    Sun W, Qi Y, Sun Y, Zhao T, Su X, Liu Y. Optimization of surface electromyography-based neurofeedback rehabilitation intervention system. J Healthc Eng. 2021;2021:110. doi:10.1155/2021/5546716

    • Search Google Scholar
    • Export Citation
  • 12.

    Ryan DS, Domínguez S, Ross SA, Nigam N, Wakeling JM. The energy of muscle contraction. II. Transverse compression and work. Front Physiol. 2020;11. doi:10.3389/fphys.2020.538522

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Macgregor LJ, Hunter AM, Orizio C, Fairweather MM, Ditroilo M. Assessment of skeletal muscle contractile properties by radial displacement: the case for tensiomyography. Sports Med Auckl Nz. 2018;48(7):16071620. doi:10.1007/s40279-018-0912-6

    • Search Google Scholar
    • Export Citation
  • 14.

    Morrissey D. Proprioceptive shoulder taping. J Bodyw Mov Ther. 2000;4(3):189194. doi:10.1054/jbmt.2000.0156

  • 15.

    Dahmane R, Valeni V, Knez N, Eren I. Evaluation of the ability to make non-invasive estimation of muscle contractile properties on the basis of the muscle belly response. Med Biol Eng Comput. 2001;39(1):5155. PubMed ID: 11214273 doi:10.1007/BF02345266

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    de Paula Simola , Harms N, Raeder C, et al. Assessment of neuromuscular function after different strength training protocols using tensiomyography. J Strength Cond Res. 2015;29(5):13391348. PubMed ID: 25474337 doi:10.1519/JSC.0000000000000768

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Wiewelhove T, Schneider C, Döweling A, et al. Effects of different recovery strategies following a half-marathon on fatigue markers in recreational runners. PLoS One. 2018;13(11):e0207313. doi:10.1371/journal.pone.0207313

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Simunič B. Between-day reliability of a method for non-invasive estimation of muscle composition. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol. 2012;22(4):527530. doi:10.1016/j.jelekin.2012.04.003

    • Search Google Scholar
    • Export Citation
  • 19.

    Pisot R, Narici MV, Simunic B, et al. Whole muscle contractile parameters and thickness loss during 35-day bed rest. Eur J Appl Physiol. 2008;104(2):409414. PubMed ID: 18297302 doi:10.1007/s00421-008-0698-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    García-Manso JM, Rodríguez-Ruiz D, Rodríguez-Matoso D, de Saa Y, Sarmiento S, Quiroga M. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). J Sports Sci. 2011;29(6):619625. PubMed ID: 21391085 doi:10.1080/02640414.2010.548822

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop. 1985;(198):4349.

  • 22.

    Perotto AO, Delagi EF, Iazzetti JM, Morrison D. Anatomical Guide for the Electromyographer: The Limbs and the Trunk. Springfield, IL: Thomas Charles C Publisher; 2006. https://pubmed.ncbi.nlm.nih.gov/4028566/

    • Search Google Scholar
    • Export Citation
  • 23.

    Gasparini M, Sabovic M, Gregoric ID, Simunic B, Pisot R. Increased fatigability of the gastrocnemius medialis muscle in individuals with intermittent claudication. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg. 2012;44(2):170176. doi:10.1016/j.ejvs.2012.04.024

    • Search Google Scholar
    • Export Citation
  • 24.

    Raeder C, Wiewelhove T, Simola RÁDP, et al. Assessment of fatigue and recovery in male and female athletes after 6 days of intensified strength training. J Strength Cond Res. 2016;30(12):34123427. PubMed ID: 27093538 doi:10.1519/JSC.0000000000001427

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rey E, Lago-Peñas C, Lago-Ballesteros J, Casáis L. The effect of recovery strategies on contractile properties using tensiomyography and perceived muscle soreness in professional soccer players. J Strength Cond Res. 2012;26(11):30813088. PubMed ID: 22210472 doi:10.1519/JSC.0b013e3182470d33

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Tous-Fajardo J, Moras G, Rodríguez-Jiménez S, Usach R, Doutres DM, Maffiuletti NA. Inter-rater reliability of muscle contractile property measurements using non-invasive tensiomyography. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol. 2010;20(4):761766. doi:10.1016/j.jelekin.2010.02.008

    • Search Google Scholar
    • Export Citation
  • 27.

    Lohr C, Braumann K-M, Reer R, Schroeder J, Schmidt T. Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers. Eur J Appl Physiol. 2018;118(7):13491359. PubMed ID: 29679246 doi:10.1007/s00421-018-3867-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Martín-Rodríguez S, Loturco I, Hunter AM, Rodríguez-Ruiz D, Munguia-Izquierdo D. Reliability and measurement error of tensiomyography to assess mechanical muscle function: a systematic review. J Strength Cond Res. 2017;31(12):35243536. PubMed ID: 28930871 doi:10.1519/JSC.0000000000002250

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Howell DC. Statistical Methods for Psychology. 7th ed. Thomson Wadsworth; 2010.

  • 30.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 31.

    Yam ML, Yang Z, Zee BC-Y, Chong KC. Effects of kinesio tape on lower limb muscle strength, hop test, and vertical jump performances: a meta-analysis. BMC Musculoskelet Disord. 2019;20(1):212. PubMed ID: 31088546 doi:10.1186/s12891-019-2564-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Yeung SS, Yeung EW. Acute effects of kinesio taping on knee extensor peak torque and stretch reflex in healthy adults. Medicine. 2016;95(4):e2615. doi:10.1097/MD.0000000000002615

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Schleip R. Fascial plasticity—a new neurobiological explanation: Part 1. J Bodyw Mov Ther. 2003;7(1):1119. doi:10.1016/S1360-8592(02)00067-0

    • Search Google Scholar
    • Export Citation
  • 34.

    Yoshida A, Kahanov L. The effect of kinesio taping on lower trunk range of motions. Res Sports Med Print. 2007;15(2):103112. doi:10.1080/15438620701405206

    • Search Google Scholar
    • Export Citation
  • 35.

    De Domenico G, McCloskey DI. Accuracy of voluntary movements at the thumb and elbow joints. Exp Brain Res. 1987;65(2):471478. PubMed ID: 3556473 doi:10.1007/BF00236321

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Woittiez RD, Huijing PA, Rozendal RH. Twitch characteristics in relation to muscle architecture and actual muscle length. Pflugers Arch. 1984;401(4):374379. PubMed ID: 6483578 doi:10.1007/BF00584338

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Azizi E, Deslauriers AR, Holt NC, Eaton CE. Resistance to radial expansion limits muscle strain and work. Biomech Model Mechanobiol. 2017;16(5):16331643. PubMed ID: 28432448 doi:10.1007/s10237-017-0909-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Alexander CM, Stynes S, Thomas A, Lewis J, Harrison PJ. Does tape facilitate or inhibit the lower fibres of trapezius? Man Ther. 2003;8(1):3741. PubMed ID: 12586560 doi:10.1054/math.2002.0485

    • Search Google Scholar
    • Export Citation
  • 39.

    Reynard F, Vuistiner P, Léger B, Konzelmann M. Immediate and short-term effects of kinesiotaping on muscular activity, mobility, strength and pain after rotator cuff surgery: a crossover clinical trial. BMC Musculoskelet Disord. 2018;19(1):305. PubMed ID: 30134883 doi:10.1186/s12891-018-2169-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Yucesoy CA. Epimuscular myofascial force transmission implies novel principles for muscular mechanics. Exerc Sport Sci Rev. 2010;38(3):128134. PubMed ID: 20577061 doi:10.1097/JES.0b013e3181e372ef

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Wilke J, Schleip R, Yucesoy CA, Banzer W. Not merely a protective packing organ? A review of fascia and its force transmission capacity. J Appl Physiol. 2018;124(1):234244. doi:10.1152/japplphysiol.00565.2017

    • Search Google Scholar
    • Export Citation
  • 42.

    Turkoglu AN, Huijing PA, Yucesoy CA. Mechanical principles of effects of botulinum toxin on muscle length-force characteristics: an assessment by finite element modeling. J Biomech. 2014;47(7):15651571. PubMed ID: 24704169 doi:10.1016/j.jbiomech.2014.03.017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Karakuzu A, Pamuk U, Ozturk C, Acar B, Yucesoy CA. Magnetic resonance and diffusion tensor imaging analyses indicate heterogeneous strains along human medial gastrocnemius fascicles caused by submaximal plantar-flexion activity. J Biomech. 2017;57:6978. PubMed ID: 28433388 doi:10.1016/j.jbiomech.2017.03.028

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Ateş F, Andrade RJ, Freitas SR, et al. Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle. Eur J Appl Physiol. 2018;118(3):585593. PubMed ID: 29327169 doi:10.1007/s00421-018-3798-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Pamuk U, Karakuzu A, Ozturk C, Acar B, Yucesoy CA. Combined magnetic resonance and diffusion tensor imaging analyses provide a powerful tool for in vivo assessment of deformation along human muscle fibers. J Mech Behav Biomed Mater. 2016;63:207219. PubMed ID: 27429070 doi:10.1016/j.jmbbm.2016.06.031

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Kaya CS, Bilgili F, Akalan NE, Temelli Y, Ateş F, Yucesoy CA. Intraoperative experiments combined with gait analyses indicate that active state rather than passive dominates the spastic gracilis muscle’s joint movement limiting effect in cerebral palsy. Clin Biomech Bristol Avon. 2019;68:151157. doi:10.1016/j.clinbiomech.2019.06.005

    • Search Google Scholar
    • Export Citation
  • 47.

    Ateş F, Temelli Y, Yucesoy CA. Intraoperative experiments show relevance of inter-antagonistic mechanical interaction for spastic muscle’s contribution to joint movement disorder. Clin Biomech Bristol Avon. 2014;29(8):943949. doi:10.1016/j.clinbiomech.2014.06.010

    • Search Google Scholar
    • Export Citation
  • 48.

    Ateş F, Temelli Y, Yucesoy CA. Human spastic gracilis muscle isometric forces measured intraoperatively as a function of knee angle show no abnormal muscular mechanics. Clin Biomech Bristol Avon. 2013;28(1):4854. doi:10.1016/j.clinbiomech.2012.08.012

    • Search Google Scholar
    • Export Citation
  • 49.

    Kaya CS, Bilgili F, Akalan NE, Yucesoy CA. Intraoperative testing of passive and active state mechanics of spastic semitendinosus in conditions involving intermuscular mechanical interactions and gait relevant joint positions. J Biomech. 2020;103:109755. PubMed ID: 32204891 doi:10.1016/j.jbiomech.2020.109755

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Lieb FJ, Perry J. Quadriceps function. An electromyographic study under isometric conditions. J Bone Joint Surg Am. 1971;53(4):749758. PubMed ID: 5580032 doi:10.2106/00004623-197153040-00014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Lin Y-F, Lin J-J, Jan M-H, Wei T-C, Shih H-Y, Cheng C-K. Role of the vastus medialis obliquus in repositioning the patella: a dynamic computed tomography study. Am J Sports Med. 2008;36(4):741746. PubMed ID: 18337358 doi:10.1177/0363546507312171

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4312 593 54
Full Text Views 94 53 1
PDF Downloads 66 10 0