Single-Leg Drop Jump Biomechanics After Ankle or Knee Joint Cooling in Healthy Young Adults

in Journal of Sport Rehabilitation

Click name to view affiliation

Jihong Park
Search for other papers by Jihong Park in
Current site
Google Scholar
PubMed
Close
,
Kyeongtak Song
Search for other papers by Kyeongtak Song in
Current site
Google Scholar
PubMed
Close
, and
Sae Yong Lee
Search for other papers by Sae Yong Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: It is unclear if lower-extremity joint cooling alters biomechanics during a functional movement. Objective: To investigate the effects of unilateral lower-extremity cryotherapy on movement alterations during a single-leg drop jump. Design: A crossover design. Setting: Laboratory. Patients: Twenty healthy subjects (10 males and 10 females; 23 y, 169 cm, 66 kg). Intervention(s): Subjects completed a single-leg drop jump before and after a 20-minute ankle or knee joint cooling on the right leg, or control (seated without cooling) on 3 separate days. Main Outcome Measures: Time to peak knee flexion, vertical ground reaction force, lower-extremity joint angular velocity (sagittal plane only), and angle and moment (sagittal and frontal planes) in the involved leg over the entire ground contact (GC; from initial contact to jump-off) during the first landing. Time to peak knee flexion was compared using an analysis of variance; the rest of the outcome measures were analyzed using functional analyses of variance (P < .05). Results: Neither joint cooling condition changed the time to peak knee flexion (F2,95 = 0.73, P = .49). Ankle joint cooling reduced vertical ground reaction force (55 N at 4% of GC), knee joint angular velocity (44°/s during 5%–9% of GC), and knee varus moment (181 N·m during 18%–20% of GC). Knee joint cooling resulted in a reduction in knee joint angular velocity (24°/s during 37%–40% of GC) and hip adduction moment (151 N·m during 46%–48% of GC), and an increase in hip joint angular velocity (16°/s during 49%–53% of GC) and plantarflexion angle (1.5° during 11%–29% of GC). Conclusion: Resuming activity immediately after lower-extremity joint cooling does not seem to predispose an individual to injury during landing because altered mechanics are neither overlapping with the injury time period nor of sufficient magnitude to lead to an injury.

Park is with the Athletic Training Laboratory, Department of Sports Medicine, Kyung Hee University, Yongin, Gyeonggi, Korea. Song is with the Sports Medicine Research Institute, Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY. Lee is with the Yonsei Institute of Sports Science and Exercise Medicine, Department of Physical Education, Yonsei University, Seoul, Korea.

Park (jihong.park@khu.ac.kr) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Pietrosimone BG, Hart JM, Saliba SA, Hertel J, Ingersoll CD. Immediate effects of transcutaneous electrical nerve stimulation and focal knee joint cooling on quadriceps activation. Med Sci Sports Exerc. 2009;41(6):11751181. PubMed ID: 19461552 doi:10.1249/MSS.0b013e3181982557

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Knight KL, Brucker JB, Stoneman PD, Rubley MD. Muscle injury management with cryotherapy. Athl Ther Today. 2000;5(4):2630. doi:10.1123/att.5.4.26

    • Search Google Scholar
    • Export Citation
  • 3.

    Nadler SF, Weingand K, Kruse RJ. Ther physiologic basis and clinical applications of cryotherapy and thermotherapy for the pain practitioner. Pain Physician. 2004;7(3):395399. PubMed ID: 16858479 doi:10.36076/ppj.2004/7/395

    • Search Google Scholar
    • Export Citation
  • 4.

    Hopkins JT, Stencil R. Ankle cryotherapy facilitates soleus function. J Orthop Sports Phys Ther. 2002;32(12):622627. PubMed ID: 12492271 doi:10.2519/jospt.2002.32.12.622

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Pietrosimone BG, Ingersoll CD. Focal knee joint cooling increases the quadriceps central activation ratio. J Sports Sci. 2009;27(8):873879. PubMed ID: 19449251 doi:10.1080/02640410902929374

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lee M, Kim S, Choi H-M, Park J. Ankle or knee joint cooling alters countermovement but not squat jump height in healthy collegiate athletes. Isokinet Exerc Sci. 2017;25(1):18. doi:10.3233/IES-160626

    • Search Google Scholar
    • Export Citation
  • 7.

    Domingues MLP. Cryotherapy and its correlates to functional performance. A brief review. Sports Sci Rev. 2013;22(3–4):229254. doi:10.2478/ssr-2013-0012

    • Search Google Scholar
    • Export Citation
  • 8.

    Kiapour AM, Kiapour A, Goel VK, et al. Uni-directional coupling between tibiofemoral frontal and axial plane rotation supports valgus collapse mechanisms of ACL injury. J Biomech. 2015;48(10):17451751. PubMed ID: 26070647 doi:10.1016/j.jbiomech.2015.05.017

    • Search Google Scholar
    • Export Citation
  • 9.

    Shin CS, Chadhari AM, Andriacchi TP. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Med Sci Sports Exerc. 2011;43(8):14841491. PubMed ID: 21266934 doi:10.1249/MSS.0b013e31820f8395

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Oliveira R, Ribeiro F, Oliveira J. Cryotherapy impairs knee joint position sense. Int J Sports Med. 2010;31(3):198201. PubMed ID: 20221997 doi:10.1055/s-0029-1242812

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Surenkok O, Aytar A, Tüzün EH, Akman MN. Cryotherapy impairs knee joint position sense and balance. Isokinet Exerc Sci. 2008;16(1):6973. doi:10.3233/IES-2008-0298

    • Search Google Scholar
    • Export Citation
  • 12.

    Uchio Y, Ochi M, Fujihara A, Adachi N, Iwasa J, Sakai Y. Cryotherapy influences joint laxity and position sense of the healthy knee joint. Arch Physi Medi Rehabil. 2003;84(1):131135. doi:10.1053/apmr.2003.50074

    • Search Google Scholar
    • Export Citation
  • 13.

    Furmnek MP, Stomka KJ, Sobiesiak A, Rzepko M, Juras G. The effects of cryothrapy on knee joint position sense and force production sense in healthy individuals. J Hum Kinet. 2018;61:3951. doi:10.1515/hukin-2017-0106

    • Search Google Scholar
    • Export Citation
  • 14.

    Thieme HA, Ingersoll CD, Knight KL, Ozmun JC. Cooling does not affect knee proprioception. J Athl Train. 1996;31:811.

  • 15.

    Jameson AG, Kinzey SJ, Hallam JS. Lower-extremity-joint cryotherapy does not affect vertical ground-reaction forces during landing. J Sport Rehabil. 2001;10(2):132142. doi:10.1123/jsr.10.2.132

    • Search Google Scholar
    • Export Citation
  • 16.

    Hart JM, Leonard JL, Ingersoll CD. Single-leg landing strategy after knee-joint cryotherapy. J Sport Rehabil. 2005;14(4):313320. doi:10.1123/jsr.14.4.313

    • Search Google Scholar
    • Export Citation
  • 17.

    Schmid S, Moffat M, Gutierrez GM. Effect of knee joint cooling on the electromyographic activity of lower extremity muscles during a plyometric exercise. J Electromyogr Kinesiol. 2010;20(6):10751081. PubMed ID: 20702111 doi:10.1016/j.jelekin.2010.07.009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Doherty C, Bleakley C, Hertel J, Caulfiled B, Ryan JM, Delahunt E. Single-leg drop landing motor control strategies following acute ankle sprain injury. Scand J Med Sci Sports. 2015;25(4):525533. PubMed ID: 24975875 doi:10.1111/sms.12282

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sarah HW, Blackburn JT, Padua DA, et al. Quadriceps neusomuscular function and jump-landing sagittal-plane knee biomechanics after anterior cruciate ligament reconstruction. J Athl Train. 2018;53(2):135143. doi:10.4085/1062-6050-306-16

    • Search Google Scholar
    • Export Citation
  • 20.

    Tamura A, Akasaka K, Otsudo T, Shozawa J, Toda Y, Yamada K. Fatigue influences lower extremity angular velocities during a single-leg drop vertical jump. J Phys Ther Sci. 2017;29(3):498504. PubMed ID: 28356640 doi:10.1589/jpts.29.498

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Gehring D, Melnyk M, Gollhofer A. Gender and fatigue have influence on knee joint control strategies during landing. Clin Biomech. 2009;24(1):8287. doi:10.1016/j.clinbiomech.2008.07.005

    • Search Google Scholar
    • Export Citation
  • 22.

    Chapell JD, Creighton RA, Giuliani C, Yu B, Garrett WE. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med. 2007;35:235241. doi:10.1177/0363546506294077

    • Search Google Scholar
    • Export Citation
  • 23.

    Pollard CD, Sigward SM, Powers CM. Limited hip and knee flexion during landing is associated with increased fronatl plane knee motion and moments. Clin Biomech. 2010;25(2):142146. doi:10.1016/j.clinbiomech.2009.10.005

    • Search Google Scholar
    • Export Citation
  • 24.

    Algafly AA, George KP. The effects of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br J Sports Med. 2007;41(6):365369. PubMed ID: 17224445 doi:10.1136/bjsm.2006.031237

    • Search Google Scholar
    • Export Citation
  • 25.

    Palmieri-Smith RM, Leonard-Frye JL, Garrison CJ, Weltman A, Ingersoll CD. Peripheral joint cooling increases spinal reflex excitability and serum norepinephrine. Int J Neurosci. 2007;117(2):229242. PubMed ID: 17365110 doi:10.1080/00207450600582702

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bleakley CM, Costello JT. Do thermal agents affect range of movement and mechanical properties in soft tissues? A systematic review. Arch Phys Med Rehabil. 2013;94(1):149163. PubMed ID: 22885279 doi:10.1016/j.apmr.2012.07.023

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kim H, Lee D, Choi H-M, Park J. Joint cooling does not hinder athletic performance during high-intensity intermittent exercise. Int J Sports Med. 2016;37(08):641646. PubMed ID: 27119166 doi:10.1055/s-0035-1559687

    • Search Google Scholar
    • Export Citation
  • 28.

    Jackson KM. Fitting of mathematical functions to biomechanical data. IEEE Trans Biomed Eng. 1979;BME-26(2):122124. PubMed ID: 761932 doi:10.1109/TBME.1979.326551

    • Search Google Scholar
    • Export Citation
  • 29.

    Demster WT. Space Requirements of the Seated Operator: Geometrical, Kinematic, and Mechanical Aspects of the Body, With Special Reference to the Limbs. OH, USA: Wright-Patterson Air Force Base; 1955.

    • Search Google Scholar
    • Export Citation
  • 30.

    Park J, Seeley MK, Francom D, Reese CS, Hopkins JT. Functional vs. traditional analysis in biomechanical gait data: an alternative statistical approach. J Hum Kinet. 2017;60(1):3949. PubMed ID: 29339984 doi:10.1515/hukin-2017-0114

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cohen J. Quantitative methods in psychology. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 32.

    McKeon PO, Wikstrom EA. Sensory-targeted ankle rehabilitation strategies for chronic ankle instability. Med Sci Sports Exerc. 2016;48(5):776784. PubMed ID: 26717498 doi:10.1249/MSS.0000000000000859

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Warren TA, McCarty EC, Richardson AL, Michener T, Spindler KP. Intra-articular knee temperature changes: ice versus cryotherapy device. Am J Sports Med. 2004;32(2):441445. PubMed ID: 14977671 doi:10.1177/0363546503258864

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Distefano LJ, Marshall SWP, Darin A., et al. The effects of an injury pervention program on landing biomechanics over time. Am J Sports Med. 2016;44(3):767776. PubMed ID: 26792707 doi:10.1177/0363546515621270

    • Search Google Scholar
    • Export Citation
  • 35.

    Shin CS, Chaudhari AM, Andriacchi TP. The influence of deceleration forces on ACL strain during single-leg landing: a simulation study. J Biomech. 2007;40(5):11451152. PubMed ID: 16797556 doi:10.1016/j.jbiomech.2006.05.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359367. PubMed ID: 17092928 doi:10.1177/0363546506293899

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Moran KA, Marshall BM. Effect of fatigue on tibial impact accelerations and knee kinematics in drop jumps. Med Sci Sports Exerc. 2006;38(10):18361842. PubMed ID: 17019307 doi:10.1249/01.mss.0000229567.09661.20

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Yeow CH, Lee PVS, Goh JCH. Effect of landing height on frontal plane kinematics, kinetics and energy dissipation at lower extremity joints. J Biomech. 2009;42(12):19671973. PubMed ID: 19501826 doi:10.1016/j.jbiomech.2009.05.017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Decker MJ, Torry MR, Wyland DJ, Sterett WI, Steadman JR. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech. 2003;18(7):662669. doi:10.1016/S0268-0033(03)00090-1

    • Search Google Scholar
    • Export Citation
  • 40.

    Mclean SG, Felin RE, Suedekum N, Calabrese G, Passerallo A, Joy S. Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc. 2007;39(3):502514. PubMed ID: 17473777 doi:10.1249/mss.0b013e3180d47f0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Self BP, Paine D. Ankle biomechanics during four landing techniques. Med Sci Sports Exerc. 2001;33(8):13381344. PubMed ID: 11474336 doi:10.1097/00005768-200108000-00015

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Prieske O, Muehlbauer T, Krüger T, Kibele A, Behm D, Granacher U. Sex-specific effects of surface instability on drop jump and landing biomechanics. Int J Sports Med. 2015;36:7581. PubMed ID: 25264860 doi:10.1055/s-0034-1384549

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Schmitz RJ, Klas AS, Perrin DH, Riemann BL, Shultz SJ. Sex differences in lower extremity biomechanics during single leg landings. Clin Biomech. 2007;22(6):681688. doi:10.1016/j.clinbiomech.2007.03.001

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2340 2340 198
Full Text Views 33 33 0
PDF Downloads 43 43 0