Relationship Among 3 Different Core Stability Tests in Healthy Young Adults: Validity and Gender Differences

in Journal of Sport Rehabilitation
Restricted access

Context: Core stability is important for preventing injury and improving performance. Although various tests for evaluating core stability have been reported to date, information on their relationship and the effect of gender differences is limited. This study aimed to (1) identify correlations among the 3 core stability tests and to examine the validity of each test and (2) identify gender differences in the test relationship and determine whether gender influenced test selection. Design: Cross-sectional study. Methods: Fifty-one healthy volunteers (27 men and 24 women) participated in the study. The participants underwent the following 3 tests: Sahrmann Core Stability Test (SCST), the lumbar spine motor control tests battery (MCBT), and Y Balance Test (YBT). Each parameter was analyzed according to all parameters and gender using the Spearman rank correlation coefficient. Results: Overall, there was a strong positive correlation between SCST and MCBT and moderate positive correlations between SCST and YBT and between MCBT and YBT. Conversely, gender-specific analyses revealed no significant correlations between YBT and SCST and between YBT and MCBT in women, although significantly strong correlations were found among all tests in men. Conclusion: Although these 3 tests evaluated interrelated functions and may be valid as core stability tests, the results should be carefully interpreted when performing YBT in women.

Kuniki and Yamagiwa are with the Graduate School of Medical Welfare Sciences, Medical Engineering, Hiroshima International University, Hiroshima, Japan. Iwamoto is with the Dept of Neuromechanics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan. Kito is with the Dept of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan.

Kito (n-kito@hirokoku-u.ac.jp) is corresponding author.
  • 1.

    Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189198. PubMed ID: 16526831 doi:10.2165/00007256-200636030-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hodges PW, Eriksson AE, Shirley D, Gandevia SC. Intra-abdominal pressure increases stiffness of the lumbar spine. J Biomech. 2005;38(9):18731880. PubMed ID: 16023475 doi:10.1016/j.jbiomech.2004.08.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cope T, Wechter S, Stucky M, Thomas C, Wilhelm M. The impact of lumbopelvic control on overhead performance and shoulder injury in overhead athletes: a systematic review. Int J Sports Phys Ther. 2019;14(4):500513. PubMed ID: 31440403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Barbado D, Lopez-Valenciano A, Juan-Recio C, et al. Trunk stability, trunk strength and sport performance level in judo. PLoS One. 2016;11(5):e0156267. PubMed ID: 27232602 doi:10.1371/journal.pone.0156267

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Chuter VH, de Jonge XA, Thompson BM, Callister R. The efficacy of a supervised and a home-based core strengthening programme in adults with poor core stability: a three-arm randomised controlled trial. Br J Sports Med. 2015;49(6):395399. PubMed ID: 25385166 doi:10.1136/bjsports-2013-093262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Mills JD, Taunton JE, Mills WA. The effect of a 10-week training regimen on lumbo-pelvic stability and athletic performance in female athletes: a randomized-controlled trial. Phys Ther Sport. 2005;6(2):6066. doi:10.1016/j.ptsp.2005.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Sharrock C, Cropper J, Mostad J, Johnson M, Malone T. A pilot study of core stability and athletic performance: is there a relationship? Int J Sports Phy Ther. 2011;6(2):6374. PubMed ID: 21713228

    • Search Google Scholar
    • Export Citation
  • 8.

    Weir A, Darby J, Inklaar H, et al. Core stability: inter- and intraobserver reliability of 6 clinical tests. Clin J Sport Med. 2010;20(1):3438. PubMed ID: 20051732 doi:10.1097/JSM.0b013e3181cae924

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Plisky PJ, Gorman PP, Butler RJ, et al. The reliability of an instrumented device for measuring components of the star excursion balance test. N Am J Sports Phys Ther. 2009;4(2):9299. PubMed ID: 21509114

    • Search Google Scholar
    • Export Citation
  • 10.

    Luomajoki H, Kool J, de Bruin ED, Airaksinen O. Reliability of movement control tests in the lumbar spine. BMC Musculoskelet Disord. 2007;8:90. PubMed ID: 17850669 doi:10.1186/1471-2474-8-90

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Luomajoki H, Kool J, de Bruin ED, Airaksinen O. Movement control tests of the low back; evaluation of the difference between patients with low back pain and healthy controls. BMC Musculoskelet Disord. 2008;24(9):170. PubMed ID: 19108735 doi:10.1186/1471-2474-9-170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Vera-Garcia FJ, Lopez-Plaza D. Tests to measure core stability in laboratory and field settings: reliability and correlation analyses. J Appl Biomech. 2019;35(3):223231. PubMed ID: 30860424 doi:10.1123/jab.2018-0407

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926934. PubMed ID: 15179160 doi:10.1249/01.mss.0000128145.75199.c3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Graci V, Van Dillen LR, Salsich GB. Gender differences in trunk, pelvis and lower limb kinematics during a single leg squat. Gait Posture. 2012;36(3):461466. PubMed ID: 22591790 doi:10.1016/j.gaitpost.2012.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zazulak BT, Ponce PL, Straub SJ, et al. Gender comparison of hip muscle activity during single-leg landing. J Orthop Sports Phys Ther. 2005;35(5):292299. PubMed ID: 15966540 doi:10.2519/jospt.2005.35.5.292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):11231130. PubMed ID: 17468378 doi:10.1177/0363546507301585

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Takano S, Iwamoto Y, Ozawa J, Kito N. Relationship between hip frontal dynamic joint stiffness and frontal and transverse plane hip kinematics during gait: sex differences. J Sport Rehabil. 2020;30(3):475481. PubMed ID: 33049704 doi:10.1123/jsr.2020-0037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pogetti LS, Nakagawa TH, Conteçote GP, Camargo PR. Core stability, shoulder peak torque and function in throwing athletes with and without shoulder pain. Phys Ther Sport. 2018;34:3642. PubMed ID: 30145541 doi:10.1016/j.ptsp.2018.08.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Coppieters M, Stappaerts K, Janssens K, Jull G. Reliability of detecting “onset of pain” and “submaximal pain” during neural provocation testing of the upper quadrant. Physiother Res Int. 2002;7(3):146156. PubMed ID: 12426912 doi:10.1002/pri.251

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Wilson BR, Robertson KE, Burnham JM, et al. The relationship between hip strength and the Y balance test. J Sport Rehabil. 2018;27(5):445450. PubMed ID: 28714790 doi:10.1123/jsr.2016-0187

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Jull G, Richardson C, Toppenberg R, Comerford M, Bui B. Towards a measurement of active muscle control for lumbar stabilisation. Aust J Physiother. 1993;39(3):187193. PubMed ID: 25026257 doi:10.1016/S0004-9514(14)60481-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lee DK, Kang MH, Lee TS, Oh JS. Relationships among the Y balance test, berg balance scale, and lower limb strength in middle-aged and older females. Braz J Phys Ther. 2015;19(3):227234. PubMed ID: 26039033 doi:10.1590/bjpt-rbf.2014.0096

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Karagiannakis DN, Iatridou KI, Mandalidis DG. Ankle muscles activation and postural stability with star excursion balance test in healthy individuals. Hum Mov Sci. 2020;69:102563. PubMed ID: 31989955 doi:10.1016/j.humov.2019.102563

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Iwamoto Y, Takahashi M, Shinkoda K. Muscle co-contraction in elderly people change due to postural stability during single-leg standing. J Physiol Anthropol. 2017;36(1):43. PubMed ID: 29246187 doi:10.1186/s40101-017-0159-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Iwamoto Y, Takahashi M, Shinkoda K. Differences of muscle co-contraction of the ankle joint between young and elderly adults during dynamic postural control at different speeds. J Physiol Anthropol. 2017;36(1):32. PubMed ID: 28764814 doi:10.1186/s40101-017-0149-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Wang IL, Wang SY, Wang LI. Sex differences in lower extremity stiffness and kinematics alterations during double-legged drop landings with changes in drop height. Sports Biomech. 2015;14(4):404412. PubMed ID: 26271402 doi:10.1080/14763141.2015.1062129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lephart SM, Ferris CM, Riemann BL, Myers JB, Fu FH. Gender differences in strength and lower extremity kinematics during landing. Clin Orthop Relat Res. 2002;(401):162169. PubMed ID: 12151893 doi:10.1097/00003086-200208000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Munro AG, Herrington LC. Between-session reliability of the star excursion balance test. Phy Ther Sport. 2010;11(4):128132. PubMed ID: 21055706 doi:10.1016/j.ptsp.2010.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    McGill SM. Low back stability: from formal description to issues for performance and rehabilitation. Exerc Sport Sci Rev. 2001;29(1):2631. PubMed ID: 11210443 doi:10.1097/00003677-200101000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1367 1367 396
Full Text Views 21 21 1
PDF Downloads 27 27 1