The Effects of Virtual Reality Nonphysical Mental Training on Coordination and Skill Transfer in Healthy Adults

in Journal of Sport Rehabilitation
Restricted access

Context: Mental training is a promising method to improve motor skills. However, transfer of these improvements to different skills or functional activities is still unclear. The purpose of this study was to investigate the effects of mental balance training programs on motor coordination and skill transfer. Design: Randomized controlled trial. Methods: Fifty-seven healthy adults (28 females and 29 males) aged between 18 and 25 years participated in this study. Participants were randomly assigned to 3 groups: virtual reality (VR) mental training group, conventional mental training group, and control group. The training program included action observation and motor imagery practice with balance exercise videos. The VR mental training group trained with a VR head-mounted display and the conventional mental training group trained with a nonimmersive computer monitor for 30 minutes, 3 days per week, for 4 weeks. Coordination skills were tested with 2 separate custom-made obstacle course tests (OCT-1 and OCT-2). OCT tests included crouching, turning, leaning, stepping over, changing direction, walking on various surfaces, or using repeated hand and arm movement tasks. OCT-1 was used to investigate the effects of mental exercises on coordination skills, and OCT-2 to investigate transfer effects for novel tasks. Test time (total and corrected) and error types (minor, major, and total) were recorded. Touching an obstacle without changing its position was classified as a minor error, and changing its position was a major error. Results: OCT-1 test time and number of errors significantly decreased in the VR mental training and conventional mental training groups, but not in the control group. The number of minor errors was only decreased in the VR mental training group. For OCT-2, total and corrected time were not significantly different between the groups. However, both training groups were significantly superior to the control group for all types of errors. Conclusions: Our findings suggest that both training interventions can significantly improve coordination and skill transfer test results. In addition, VR mental training may have some advantages over conventional mental training. These findings are promising for the use of mental training for prevention and rehabilitation in special populations.

Köyağasıoğlu is with the Department of Sports Medicine, Kayseri City Training and Research Hospital, Kayseri, Turkey. Özgürbüz is with the Department of Sports Medicine, Ege University, Faculty of Medicine, İzmir, Turkey.

Köyağasıoğlu (ogunkoyagasioglu@gmail.com) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 430 KB)
  • 1.

    Zech A, Hübscher M, Vogt L, Banzer W, Hänsel F, Pfeifer K. Balance training for neuromuscular control and performance enhancement: A systematic review. J Athl Train. 2010;45(4):392403. PubMed ID: 20617915 doi:10.4085/1062-6050-45.4.392

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Schmidt RA, Lee TD, Winstein CJ, Wulf G, Zelaznik HN. Motor Control and Learning. 6th ed. Champaign, IL: Human Kinetics, Inc.; 2018.  = https://books.google.com.tr/books?id = oJdLDwAAQBAJ

    • Search Google Scholar
    • Export Citation
  • 3.

    Doya K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol. 2000;10(6):732739. PubMed ID: 11240282 doi:10.1016/S0959-4388(00)00153-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Seidler RD. Neural correlates of motor learning, transfer of learning, and learning to learn. Exerc Sport Sci Rev. 2013;38(1):39. doi:10.1097/JES.0b013e3181c5cce7.Neural

    • Search Google Scholar
    • Export Citation
  • 5.

    Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev Neurosci. 2011;12(12):739751. PubMed ID: 22033537 doi:10.1038/nrn3112

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Miranda CS, Oliveira TDP, Gouvêa JXM, Perez DB, Marques AP, Piemonte MEP. Balance training in virtual reality promotes performance improvement but not transfer to postural control in people with chronic stroke. Games Health J. 2019;8(4):294300. PubMed ID: 31009243 doi:10.1089/g4h.2018.0075

    • Search Google Scholar
    • Export Citation
  • 7.

    Taube W, Lorch M, Zeiter S, Keller M. Non-physical practice improves task performance in an unstable, perturbed environment: motor imagery and observational balance training. Front Hum Neurosci. 2014;8:110. doi:10.3389/fnhum.2014.00972

    • Search Google Scholar
    • Export Citation
  • 8.

    Williams AM, Ward P, Knowles JM, Smeeton NJ. Anticipation skill in a real-world task: Measurement, training, and transfer in tennis. J Exp Psychol Appl. 2002;8(4):259270. PubMed ID: 12570100 doi:10.1037/1076-898X.8.4.259

    • Search Google Scholar
    • Export Citation
  • 9.

    Michalski SC, Szpak A, Saredakis D, Ross TJ, Billinghurst M, Loetscher T. Getting your game on: using virtual reality to improve real table tennis skills. PLoS One. 2019;14(9):114. doi:10.1371/journal.pone.0222351

    • Search Google Scholar
    • Export Citation
  • 10.

    Nicholson V, Watts N, Chani Y, Keogh JW. Motor imagery training improves balance and mobility outcomes in older adults: a systematic review. J Physiother. 2019;65(4):200207. PubMed ID: 31521556 doi:10.1016/j.jphys.2019.08.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Patel M. Action observation in the modification of postural sway and gait: theory and use in rehabilitation. Gait Posture. 2017;58:115120. PubMed ID: 28772130 doi:10.1016/j.gaitpost.2017.07.113

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1–2):103109. doi:10.1006/nimg.2001.0832

    • Search Google Scholar
    • Export Citation
  • 13.

    Rizzolatti G, Fabbri-Destro M, Cattaneo L. Mirror neurons and their clinical relevance. Nat Clin Pract Neurol. 2009;5(1):2434. PubMed ID: 19129788 doi:10.1038/ncpneuro0990

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lago-Rodriguez A, Cheeran B, Koch G, Hortobagyi T, Fernandez-del-Olmo M. The role of mirror neurons in observational motor learning: an integrative review. Eur J Hum Mov. 2014;(32):82103.

    • Search Google Scholar
    • Export Citation
  • 15.

    Buchanan JJ. The coordination dynamics of observational learning: relative motion direction and relative phase as informational content linking action-perception to action-production. Adv Exp Med Biol. 2016;957:209228. PubMed ID: 28035568 doi:10.1007/978-3-319-47313-0_12

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lawrence G, Callow N, Roberts R. Watch me if you can: imagery ability moderates observational learning effectiveness. Front Hum Neurosci. 2013;7:17. doi:10.3389/fnhum.2013.00522

    • Search Google Scholar
    • Export Citation
  • 17.

    Battaglia C, Artibale ED, Fiorilli G, et al. Use of video observation and motor imagery on jumping performance in national rhythmic gymnastics athletes. Hum Mov Sci. 2014;38:225234. PubMed ID: 25457420 doi:10.1016/j.humov.2014.10.001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Wakefield C, Smith D, Moran AP, Holmes P. Functional equivalence or behavioural matching? A critical reflection on 15 years of research using the PETTLEP model of motor imagery. Int Rev Sport Exerc Psychol. 2013;6(1):105121. doi:10.1080/1750984X.2012.724437

    • Search Google Scholar
    • Export Citation
  • 19.

    Michalski SC, Szpak A, Loetscher T. Using virtual environments to improve real-world motor skills in sports: A systematic review. Front Psychol. 2019;10:19. doi:10.3389/fpsyg.2019.02159

    • Search Google Scholar
    • Export Citation
  • 20.

    Frank C. Virtual reality and mental training. In: Terry PC, Bertollo M, Filho E, eds. Advancements in Mental Skills Training. 1st ed. Routledge; 2020:177186. doi:10.4324/9780429025112-1

    • Search Google Scholar
    • Export Citation
  • 21.

    Holden MK. Virtual environments for motor rehabilitation: review. Cyberpsychology Behav. 2005;8(3):187211.

  • 22.

    dos Santos Mendes FA, Pompeu JE, Lobo AM, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease—effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy. 2012;98(3):217223. PubMed ID: 22898578 doi:10.1016/j.physio.2012.06.001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tanaka K, Parker JR, Baradoy G, Sheehan D, Holash JR, Katz L. A comparison of exergaming interfaces for use in rehabilitation programs and research. J Canadian Game Stud Assoc. 2012;6(9):6981.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ellis PD. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results. Cambridge University Press: New York; 2010. doi:10.1017/CBO9780511761676

    • Search Google Scholar
    • Export Citation
  • 25.

    Roberts R, Callow N, Hardy L, Markland D, Bringer J. Movement imagery ability: development and assessment of a revised version of the vividness of movement imagery questionnaire. J Sport Exerc Psychol. 2008;30(2):200221. PubMed ID: 18490791 doi:10.1123/jsep.30.2.200

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kennedy RS, Lane NE, Kevin S, Lilienthal MG. The international journal of aviation psychology simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol. 1993;3(3):203220. doi:10.1207/s15327108ijap0303

    • Search Google Scholar
    • Export Citation
  • 27.

    Rohbanfard H, Proteau L. Learning through observation: a combination of expert and novice models favors learning. Exp Brain Res. 2011;215:183197. PubMed ID: 21986667 doi:10.1007/s00221-011-2882-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Rizzolatti G, Cattaneo L, Fabbri-Destro M, Rozzi S. Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiol Rev. 2014;94(2):655706. PubMed ID: 24692357 doi:10.1152/physrev.00009.2013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Polis Akademisi. 26. Dönem POMEM Giriş Sınavı Fiziki Yeterlilik Sınav Talimatı. https://www.pa.edu.tr/26-donem-pomem-giris-sinavic2a0fiziki-yeterlilik-sinav-talimatic2a0-duyurular.html

    • Search Google Scholar
    • Export Citation
  • 30.

    Karni A, Meyer G, Rey-Hipolito C, et al. The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci. 1998;95:861868. PubMed ID: 9448252

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Taylor J, Ivry R. Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning. Prog Brain Res. 2014;210:217253. PubMed ID: 24916295

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Gentili R, Papaxanthis C, Pozzo T. Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience. 2006;137(3):761772. PubMed ID: 16338093 doi:10.1016/j.neuroscience.2005.10.013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Guillot A, Desliens S, Rouyer C, Rogowski I. Motor imagery and tennis serve performance: the external focus efficacy. J Sports Sci Med. 2013;12(2):332338. PubMed ID: 24149813

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Gruber M, Gollhofe A. Impact of sensorimotor training on the rate of force development and neural activation. Eur J Appl Physiol. 2004;92(1-2):98105. PubMed ID: 15024669 doi:10.1007/s00421-004-1080-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kearney PE, Judge P. Successful transfer of a motor learning strategy to a novel sport. Percept Mot Skills. 2017;124(5):10091021. PubMed ID: 28685651 doi:10.1177/0031512517719189

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Miles HC, Pop SR, Watt SJ, Lawrence GP, John NW. A review of virtual environments for training in ball sports. Comput Graph. 2012;36(6):714726. doi:10.1016/j.cag.2012.04.007

    • Search Google Scholar
    • Export Citation
  • 37.

    Covaci A, Olivier A-H, Multon F. Third person view and guidance for more natural motor behaviour in immersive basketball playing. Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology; 2014. doi:10.1145/2671015.2671023

    • Search Google Scholar
    • Export Citation
  • 38.

    Kim A, Schweighofer N, Finley JM. Locomotor skill acquisition in virtual reality shows sustained transfer to the real world. J Neuroeng Rehabil. 2019;16(1):110. doi:10.1186/s12984-019-0584-y

    • Search Google Scholar
    • Export Citation
  • 39.

    Abrahamova D, Hlavacka F. Age-related changes of human balance during quiet stance. Physiol Res. 2008;57(6):117.

  • 40.

    Gréhaigne JF, Godbout P, Bouthier D. The teaching and learning of decision making in team sports. Quest. 2001;53(1):5976. doi:10.1080/00336297.2001.10491730

    • Search Google Scholar
    • Export Citation
  • 41.

    Dhillon H, Dhillon S, Dhillon M. Current concepts in sports injury rehabilitation. Indian J Orthop. 2017;51(5): 529536. PubMed ID: 28966376 doi:10.4103/ortho.IJOrtho

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Myer GD, Paterno M V., Ford KR, Quatman CE, Hewett TE. Rehabilitation after anterior cruciate ligament reconstruction: Criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther. 2006;36(6):385402. PubMed ID: 16776488 doi:10.2519/jospt.2006.2222

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Davies GJ, McCarty E, Provencher M, Manske RC. ACL return to sport guidelines and criteria. Curr Rev Musculoskelet Med. 2017;10(3):307314. PubMed ID: 28702921 doi:10.1007/s12178-017-9420-9

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1854 1854 412
Full Text Views 20 20 4
PDF Downloads 29 29 4