Measurement Properties of Clinically Accessible Movement Assessment Tools for Analyzing Single-Leg Squats and Step-Downs: A Systematic Review

in Journal of Sport Rehabilitation
Restricted access

Context: Poor lower-extremity biomechanics are predictive of increased risk of injury. Clinicians analyze the single-leg squat (SLS) and step-down (SD) with rubrics and 2D assessments to identify these poor lower-extremity biomechanics. However, evidence on measurement properties of movement assessment tools is not strongly outlined. Measurement properties must be established before movement assessment tools are recommended for clinical use. Objective: The purpose of this study was to systematically review the evidence on measurement properties of rubrics and 2D assessments used to analyze an SLS and SD. Evidence Acquisition: The search strategy was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines. The search was performed in PubMed, SPORTDiscus, and Web of Science databases. The COnsensus-based Standards for the selection of health Measurement INstruments multiphase procedure was used to extract relevant data, evaluate methodological quality of each study, score the results of each movement assessment, and synthesize the evidence. Evidence Synthesis: A total of 44 studies were included after applying eligibility criteria. Reliability and construct validity of knee frontal plane projection angle was acceptable, but criterion validity was unacceptable. Reliability of the Chmielewski rubric was unacceptable. Content validity of the knee-medial-foot and pelvic drop rubrics was acceptable. The remaining rubrics and 2D measurements had inconclusive or conflicting results regarding reliability and validity. Conclusions: Knee frontal plane projection angle is reliable for analyzing the SLS and SD; however, it does not serve as a substitute for 3D motion analysis. The Chmielewski rubric is not recommended for assessing the SLS or SD as it may be unreliable. Most movement assessment tools yield indeterminate results. Within the literature, standardized names, procedures, and reporting of movement assessment tool reliability and validity are inconsistent.

The authors are with the University of Wisconsin-Milwaukee, Milwaukee, WI, USA.

Lally (emlally@uwm.edu) is corresponding author.
  • 1.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Myer GD, Ford KR, Di Stasi SL, Foss KD, Micheli LJ, Hewett TE. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Br J Sports Med. 2015;49(2):118122. PubMed ID: 24687011 doi:10.1136/bjsports-2013-092536

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Noehren B, Hamill J, Davis I. Prospective evidence for a hip etiology in patellofemoral pain. Med Sci Sports Exerc. 2013;45(6):11201124. PubMed ID: 23274607 doi:10.1249/MSS.0b013e31828249d2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Collins NJ, Crossley KM, Darnell R, Vicenzino B. Predictors of short and long term outcome in patellofemoral pain syndrome: a prospective longitudinal study. BMC Musculoskelet Disord. 2010;11(1):11. doi:10.1186/1471-2474-11-11

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Lankhorst NE, van Middelkoop M, Crossley KM, et al. Factors that predict a poor outcome 5–8 years after the diagnosis of patellofemoral pain: a multicentre observational analysis. Br J Sports Med. 2016;50(14):881886. PubMed ID: 26463119 doi:10.1136/bjsports-2015-094664

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Myklebust G, Holm I, Maehlum S, Engebretsen L, Bahr R. Clinical, functional, and radiologic outcome in team handball players 6 to 11 years after anterior cruciate ligament injury: a follow-up study. Am J Sports Med. 2003;31(6):981989. doi:10.1177/03635465030310063901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis. 2004;63(3):269273. PubMed ID: 14962961 doi:10.1136/ard.2003.008136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Crossley KM, Zhang WJ, Schache AG, Bryant A, Cowan SM. Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med. 2011;39(4):866873. PubMed ID: 21335344 doi:10.1177/0363546510395456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chmielewski TL, Hodges MJ, Horodyski M, Bishop MD, Conrad BP, Tillman SM. Investigation of clinician agreement in evaluating movement quality during unilateral lower extremity functional tasks: a comparison of 2 rating methods. J Orthop Sports Phys Ther. 2007;37(3):122129. PubMed ID: 17416127 doi:10.2519/jospt.2007.2457

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    DiMattia MA, Livengood AL, Uhl TL, Mattacola CG, Malone TR. What are the validity of the single-leg-squat test and its relationship to hip-abduction strength? J Sport Rehabil. 2005;14(2):108123. doi:10.1123/jsr.14.2.108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Piva SR, Fitzgerald K, Irrgang JJ, et al. Reliability of measures of impairments associated with patellofemoral pain syndrome. BMC Musculoskelet Disord. 2006;7(1):33. doi:10.1186/1471-2474-7-33

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McLean SG, Walker K, Ford KR, Myer GD, Hewett TE, van den Bogert AJ. Evaluation of a two dimensional analysis method as a screening and evaluation tool for anterior cruciate ligament injury. Br J Sports Med. 2005;39(6):355362. PubMed ID: 15911607 doi:10.1136/bjsm.2005.018598

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Willson JD, Davis IS. Utility of the frontal plane projection angle in females with patellofemoral pain. J Orthop Sports Phys Ther. 2008;38(10):606615. PubMed ID: 18827327 doi:10.2519/jospt.2008.2706

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dingenen B, Malfait B, Vanrenterghem J, Verschueren SM, Staes FF. The reliability and validity of the measurement of lateral trunk motion in two-dimensional video analysis during unipodal functional screening tests in elite female athletes. Phys Ther Sport. 2014;15(2):117123. PubMed ID: 23891143 doi:10.1016/j.ptsp.2013.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mauntel TC, Frank BS, Begalle RL, Blackburn JT, Padua DA. Kinematic differences between those with and without medial knee displacement during a single-leg squat. J Appl Biomech. 2014;30(6):707712. PubMed ID: 25009951 doi:10.1123/jab.2014-0003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jones D, Tillman SM, Tofte K, et al. Observational ratings of frontal plane knee position are related to the frontal plane projection angle but not the knee abduction angle during a step-down task. J Orthop Sports Phys Ther. 2014;44(12):973978. PubMed ID: 25366084 doi:10.2519/jospt.2014.4960

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Arnold BL, Gansneder B, Perrin D. Research Methods in Athletic Training. Philadelphia, PA: F.A. Davis Co.; 2005.

  • 18.

    Brakenhoff TB, Mitroiu M, Keogh RH, Moons KGM, Groenwold RHH, van Smeden M. Measurement error is often neglected in medical literature: a systematic review. J Clin Epidemiol. 2018;98:8997. PubMed ID: 29522827 doi:10.1016/j.jclinepi.2018.02.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Poulsen DR, James CR. Concurrent validity and reliability of clinical evaluation of the single leg squat. Physiother Theory Pract. 2011;27(8):586594. PubMed ID: 21801109 doi:10.3109/09593985.2011.552539

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Weir A, Darby J, Inklaar H, Koes B, Bakker E, Tol JL. Core stability: inter- and intraobserver reliability of 6 clinical tests. Clin J Sport Med. 2010;20(1):3438. PubMed ID: 20051732 doi:10.1097/JSM.0b013e3181cae924

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Gianola S, Castellini G, Stucovitz E, Nardo A, Banfi G. Single leg squat performance in physically and non-physically active individuals: a cross-sectional study. BMC Musculoskelet Disord. 2017;18(1):299. PubMed ID: 28709418 doi:10.1186/s12891-017-1660-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ageberg E, Bennell KL, Hunt MA, Simic M, Roos EM, Creaby MW. Validity and inter-rater reliability of medio-lateral knee motion observed during a single-limb mini squat. BMC Musculoskelet Disord. 2010;11(1):265. doi:10.1186/1471-2474-11-265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Junge T, Balsnes S, Runge L, Juul-Kristensen B, Wedderkopp N. Single leg mini squat: an inter-tester reproducibility study of children in the age of 9–10 and 12–14 years presented by various methods of kappa calculation. BMC Musculoskelet Disord. 2012;13(1):203. doi:10.1186/1471-2474-13-203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Harris-Hayes M, Steger-May K, Koh C, Royer NK, Graci V, Salsich GB. Classification of lower extremity movement patterns based on visual assessment: reliability and correlation with 2-dimensional video analysis. J Athl Train. 2014;49(3):304310. PubMed ID: 24955621 doi:10.4085/1062-6050-49.2.21

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Scholtes SA, Salsich GB. A dynamic valgus index that combines hip and knee angles: assessment of utility in females with patellofemoral pain. Int J Sports Phys Ther. 2017;12(3):333340. PubMed ID: 28593087

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hughes T, Jones RK, Starbuck C, Picot J, Sergeant JC, Callaghan MJ. Are tibial angles measured with inertial sensors useful surrogates for frontal plane projection angles measured using 2-dimensional video analysis during single leg squat tasks? A reliability and agreement study in elite football (soccer) players. J Electromyogr Kinesiol. 2019;44:2130. PubMed ID: 30469107 doi:10.1016/j.jelekin.2018.11.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Terwee CB, Prinsen CAC, Chiarotto A, et al. COSMIN methodology for evaluating the content validity of patient-reported outcome measures: a Delphi study. Qual Life Res. 2018;27(5):11591170. PubMed ID: 29550964 doi:10.1007/s11136-018-1829-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Barker-Davies RM, Roberts A, Bennett AN, Fong DTP, Wheeler P, Lewis MP. Single leg squat ratings by clinicians are reliable and predict excessive hip internal rotation moment. Gait Posture. 2018;61:453458. PubMed ID: 29486363 doi:10.1016/j.gaitpost.2018.02.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Garrick LE, Alexander BC, Schache AG, Pandy MG, Crossley KM, Collins NJ. Athletes rated as poor single-leg squat performers display measurable differences in single-leg squat biomechanics compared with good performers. J Sport Rehabil. 2018;27(6):546553. PubMed ID: 29140159 doi:10.1123/jsr.2016-0208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kingston B, Murray A, Norte GE, Glaviano NR. Validity and reliability of 2-dimensional trunk, hip, and knee frontal plane kinematics during single-leg squat, drop jump, and single-leg hop in females with patellofemoral pain. Phys Ther Sport. 2020;45:181187. PubMed ID: 32823213 doi:10.1016/j.ptsp.2020.07.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mentiplay BF, Hasanki K, Perraton LG, Pua YH, Charlton PC, Clark RA. Three-dimensional assessment of squats and drop jumps using the Microsoft Xbox One Kinect: reliability and validity. J Sports Sci. 2018;36(19):22022209. doi:10.1080/02640414.2018.1445439

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Schurr SA, Marshall AN, Resch JE, Saliba SA. Two-dimensional video analysis is comparable to 3D motion capture in lower extremity assessment. Int J Sports Phys Ther. 2017;12(2):163172. PubMed ID: 28515970

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Simon M, Parizek C, Earl-Boehm JE, Bazett-Jones DM. Quantitative and qualitative assessment of frontal plane knee motion in males and females: a reliability and validity study. The Knee. 2018;25(6):10571064. PubMed ID: 30414788 doi:10.1016/j.knee.2018.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Nae J, Creaby MW, Nilsson G, Crossley KM, Ageberg E. Measurement properties of a test battery to assess postural orientation during functional tasks in patients undergoing anterior cruciate ligament injury rehabilitation. J Orthop Sports Phys Ther. 2017;47(11):863873. PubMed ID: 29034799 doi:10.2519/jospt.2017.7270

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Werner DM, Di Stasi S, Lewis CL, Barrios JA. Test-retest reliability and minimum detectable change for various frontal plane projection angles during dynamic tasks. Phys Ther Sport. 2019;40:169176. doi:10.1016/j.ptsp.2019.09.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Lopes TJA, Ferrari D, Ioannidis J, Simic M, De Azevedo FM, Pappas E. Reliability and validity of frontal plane kinematics of the trunk and lower extremity measured with 2-dimensional cameras during athletic tasks: a systematic review with meta-analysis. J Orthop Sports Phys Ther. 2018;48(10):812822. doi:10.2519/jospt.2018.8006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Terwee CB, Bot SDM, de Boer MR, et al. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol. 2007;60(1):3442. PubMed ID: 17161752 doi:10.1016/j.jclinepi.2006.03.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Lally EM, Ericksen H, Earl-Boehm JE. Measurement properties of clinically accessible movement assessment tools for analyzing jump-landings: a systematic review. J Sport Rehabil. In press. doi:10.1123/jsr.2021-0288

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Mokkink LB, de Vet HCW, Prinsen CAC, et al. COSMIN risk of bias checklist for systematic reviews of patient-reported outcome measures. Qual Life Res. 2018;27(5):11711179. PubMed ID: 29260445 doi:10.1007/s11136-017-1765-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Prinsen CAC, Mokkink LB, Bouter LM, et al. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual Life Res. 2018;27(5):11471157. PubMed ID: 29435801 doi:10.1007/s11136-018-1798-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Bartels B, de Groot JF, Terwee CB. The six-minute walk test in chronic pediatric conditions: a systematic review of measurement properties. Phys Ther. 2013;93(4):529541. PubMed ID: 23162042 doi:10.2522/ptj.20120210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Hegedus EJ, McDonough SM, Bleakley C, Cook CE, Baxter GD. Clinician-friendly lower extremity physical performance measures in athletes: a systematic review of measurement properties and correlation with injury, part 1. The tests for knee function including the hop tests. Br J Sports Med. 2015;49(10):642648. doi:10.1136/bjsports-2014-094094

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Hegedus EJ, McDonough SM, Bleakley C, Baxter D, Cook CE. Clinician-friendly lower extremity physical performance tests in athletes: a systematic review of measurement properties and correlation with injury, part 2. The tests for the hip, thigh, foot, and ankle including the star excursion balance test. Br J Sports Med. 2015;49(10):649656. doi:10.1136/bjsports-2014-094341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Jakobsson M, Gutke A, Mokkink LB, Smeets R, Lundberg M. Level of evidence for reliability, validity, and responsiveness of physical capacity tasks designed to assess functioning in patients with low back pain: a systematic review using the COSMIN standards. Phys Ther. 2019;99(4):457477. PubMed ID: 30566577 doi:10.1093/ptj/pzy159

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Kroman SL, Roos EM, Bennell KL, Hinman RS, Dobson F. Measurement properties of performance-based outcome measures to assess physical function in young and middle-aged people known to be at high risk of hip and/or knee osteoarthritis: a systematic review. Osteoarthritis Cartilage. 2014;22(1):2639. PubMed ID: 24216060 doi:10.1016/j.joca.2013.10.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Brenner Ribeiro D, de Mello Rodrigues G, Bertoncello D. Intra and inter-rater reliability in dynamic valgus in soccer players/Confiabilidade intra e interevaluador en el valgo dinámico en atletas de fútbol. Rev Bras Med Esporte. 2020;26(5):396400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Casartelli NC, Maffiuletti NA, Brunner R, et al. Clinical rating of movement-pattern quality in patients with femoroacetabular impingement syndrome: a methodological study. J Orthop Sports Phys Ther. 2018;48(4):260269. PubMed ID: 29548274 doi:10.2519/jospt.2018.7840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Dajime PF, Smith H, Zhang Y. Automated classification of movement quality using the Microsoft Kinect V2 sensor. Comput Biol Med. 2020;125:104021. PubMed ID: 33011646 doi:10.1016/j.compbiomed.2020.104021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Doozan M, Bazett-Jones DM, Glaviano NR. Novice versus expert intertester reliability of two-dimensional squatting kinematics in females with and without patellofemoral pain. Int J Athl Ther Train. 2021;26:17. doi:10.1123/ijatt.2019-0090

    • Search Google Scholar
    • Export Citation
  • 50.

    Friedrich J, Brakke R, Akuthota V, Sullivan W. Reliability and practicality of the core score: four dynamic core stability tests performed in a physician office setting. Clin J Sport Med. 2017;27(4):409414. PubMed ID: 28653966 doi:10.1097/JSM.0000000000000366

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Hansen R, Lundgaard-Nielsen M, Henriksen M. Visual assessment of dynamic knee joint alignment in patients with patellofemoral pain: an agreement study. Peer J. 2021;9:e12203. PubMed ID: 34721963 doi:10.7717/peerj.12203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Herman G, Nakdimon O, Levinger P, Springer S. Agreement of an evaluation of the forward-step-down test by a broad cohort of clinicians with that of an expert panel. J Sport Rehabil. 2016;25(3):227232. PubMed ID: 26655963 doi:10.1123/jsr.2014-0319

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Horan SA, Watson SL, Carty CP, Sartori M, Weeks BK. Lower-limb kinematics of single-leg squat performance in young adults. Physiother Can. 2014;66(3):228233. doi:10.3138/ptc.2013-09

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Kennedy MD, Burrows L, Parent E. Intrarater and interrater reliability of the single-leg squat test. Athl Ther Today. 2010;15(6):3236. doi:10.1123/att.15.6.32.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    McCallister E, Flowers DW. Can the forward-step-down test be used reliably in the clinical setting to assess movement changes resulting from maximal exertion? A pilot study. Internet J Allied Health Sci Pract. 2020;18(4):7. doi:10.46743/1540-580X/2020.1931

    • Search Google Scholar
    • Export Citation
  • 56.

    McGovern RP, Christoforetti JJ, Martin RL, Phelps AL, Kivlan BR. Evidence for reliability and validity of functional performance testing in the evaluation of nonarthritic hip pain. J Athl Train. 2019;54(3):276282. PubMed ID: 30829535 doi:10.4085/1062-6050-33-18

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    O’Connor S, McCaffrey N, Whyte EF, Moran KA. Can a standardized visual assessment of squatting technique and core stability predict injury? J Strength Cond Res. 2020;34(1):2636. PubMed ID: 31490423 doi:10.1519/jsc.0000000000003262

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Ortqvist M, Mostrom EB, Roos EM, et al. Reliability and reference values of two clinical measurements of dynamic and static knee position in healthy children. Knee Surg Sports Traumatol Arthrosc. 2011;19(12):20602066. PubMed ID: 21584720 doi:10.1007/s00167-011-1542-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Ota M, Tateuchi H, Hashiguchi T, et al. Verification of reliability and validity of motion analysis systems during bilateral squat using human pose tracking algorithm. Gait Posture. 2020;80:6267. PubMed ID: 32485426 doi:10.1016/j.gaitpost.2020.05.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Perrott MA, Pizzari T, Opar MS, Cook J. Athletes with a clinical rating of good and poor lumbopelvic stability have different kinematic variables during single leg squat and dip test. Physiother Theory Pract. 2021;37(8):906915. doi:10.1080/09593985.2019.1655823

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Rabin A, Portnoy S, Kozol Z. The association between visual assessment of quality of movement and three-dimensional analysis of pelvis, hip, and knee kinematics during a lateral step-down test. J Strength Cond Res. 2016;30(11):32043211. PubMed ID: 26982974 doi:10.1519/JSC.0000000000001420

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Ressman J, Rasmussen-Barr E, Grooten WJA. Reliability and validity of a novel kinect-based software program for measuring a single leg squat. BMC Sports Sci Med Rehabil. 2020;12(1):31. doi:10.1186/s13102-020-00179-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Ressman J, Grooten WJA, Rasmussen-Barr E. Visual assessment of movement quality: a study on intra- and interrater reliability of a multi-segmental single leg squat test. BMC Sports Sci Med Rehabil. 2021;13(1):66. PubMed ID: 34099021 doi:10.1186/s13102-021-00289-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Tate J, True H, Dale B, Baker C. Expert versus novice interrater and intrarater reliability of the frontal plane projection angle during a single-leg squat. Int J Athl Ther Train. 2015;20(4):2327. doi:10.1123/ijatt.2014-0116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Ugalde V, Brockman C, Bailowitz Z, Pollard CD. Single leg squat test and its relationship to dynamic knee valgus and injury risk screening. PM R. 2015;7(3):229235. PubMed ID: 25111946 doi:10.1016/j.pmrj.2014.08.361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Weeks BK, Carty CP, Horan SA. Kinematic predictors of single-leg squat performance: a comparison of experienced physiotherapists and student physiotherapists. BMC Musculoskelet Disord. 2012;13(1) 207. doi:10.1186/1471-2474-13-207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Whatman C, Hume P, Hing W. The reliability and validity of physiotherapist visual rating of dynamic pelvis and knee alignment in young athletes. Phys Ther Sport. 2013;14(3):168174. PubMed ID: 23107340 doi:10.1016/j.ptsp.2012.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Whatman C, Toomey C, Emery C. Visual rating of movement quality in individuals with and without a history of intra-articular knee injury. Physiother Theory Pract. 2019:17. doi:10.1080/09593985.2019.1703229

    • Search Google Scholar
    • Export Citation
  • 69.

    Whelan D, Delahunt E, O’Reilly M, Hernandez B, Caulfield B. Determining interrater and intrarater levels of agreement in students and clinicians when visually evaluating movement proficiency during screening assessments. Phys Ther. 2019;99(4):478486. PubMed ID: 30657981 doi:10.1093/ptj/pzz004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Mokkink LB, Boers M, van der Vleuten CPM, et al. COSMIN risk of bias tool to assess the quality of studies on reliability or measurement error of outcome measurement instruments: a Delphi study. BMC Med Res Methodol. 2020;20(1):293293. PubMed ID: 33267819 doi:10.1186/s12874-020-01179-5

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 627 627 274
Full Text Views 12 12 2
PDF Downloads 17 17 3