Interadministrator Reliability of a Modified Instrumented Push and Release Test of Reactive Balance

in Journal of Sport Rehabilitation
Restricted access

Context: Traditional assessments of reactive balance require sophisticated instrumentation to ensure objective, highly repeatable paradigms. This instrumentation is clinically impractical. The Push and Release test (P&R) is a well-validated clinical test that examines reactive balance, and the application of wearable inertial measurement units (IMU) enables sensitive and objective assessment of this clinically feasible test. The P&R relies on administrator experience and may be susceptible to interadministration reliability concerns. The purpose of this study was to evaluate the interadministrator reliability of objective outcomes from an instrumented, modified version of the P&R test. Design: Crossover interadministrator design. Methods: Twenty healthy adults (20–35 y) completed the P&R in 4 directions with 2 different administrators. Measures quantified using IMUs included step latency, step length, and time to stability. Lean angle (LA) at release was used as a measure of administration consistency. The intraclass correlation coefficient (ICC) estimate was used to assess interadministrator reliability in each direction. To determine consistency of LA within and across administrators, we calculated the SDs for each rater by direction and the interadministrator reliability of LA using ICC. Results: Across individual directions, the ICC for agreement between raters ranged from .16 to .39 for step latency, from .52 to .62 for time to stability, and from .48 to .84 for step length. Summary metrics across all 4 directions produced higher ICC values. There was poor to moderate consistency in administration based on LA, but LA did not significantly affect any of the outcomes. Conclusion: The modified P&R yields moderate interadministrator reliability and high validity. Summary metrics over all 4 directions (the maximum step latency, the median time to stability, and the median step length) are likely more reliable than direction-specific scores. Variations in body size should also be considered when comparing populations.

Morris, Kreter, Cassidy, and P.C. Fino are with the Department of Health & Kinesiology, University of Utah, Salt Lake City, UT, USA. N.F. Fino is with the Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA. Pelo and Dibble are with the Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA.

Morris (amanda.morris@utah.edu) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 393 KB)
  • 1.

    Pollock AS, Durward BR, Rowe PJ, Paul JP. What is balance? Clin Rehabil. 2000;14(4):402406. PubMed ID: 10945424 doi:10.1191/0269215500cr342oa

  • 2.

    Morris A, Casucci T, McFarland MM, et al. Research letter: reactive balance responses after mild traumatic brain injury (mTBI): a scoping review. medRxiv. 2021. doi:10.1101/2020.12.17.20248433

    • Search Google Scholar
    • Export Citation
  • 3.

    Horak FB. Postural orientation and equilibrium: what do we know about neural control of balance to prevent falls? Age Ageing. 2006;35(S2):ii7ii11.

  • 4.

    Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm. 2007;114:13391348. PubMed ID: 17393068 doi:10.1007/s00702-007-0657-0

  • 5.

    Carty CP, Cronin NJ, Nicholson D, et al. Reactive stepping behaviour in response to forward loss of balance predicts future falls in community-dwelling older adults. Age Ageing. 2015;44(1):109115. PubMed ID: 24918170 doi:10.1093/ageing/afu054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mansfield A, Wong JS, Mcilroy WE, et al. Do measures of reactive balance control predict falls in people with stroke returning to the community? Physiotherapy. 2015;101(4):373380. PubMed ID: 26050134 doi:10.1016/j.physio.2015.01.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Mak MKY, Auyeung MM. The mini-bestest can predict parkinsonian recurrent fallers: a 6-month prospective study. J Rehabil Med. 2013;45(6):565571. PubMed ID: 23673397 doi:10.2340/16501977-1144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Schlenstedt C, Brombacher S, Hartwigsen G, Weisser B, Möller B, Deuschl G. Comparison of the fullerton advanced balance scale, mini-BESTest, and berg balance scale to predict falls in Parkinson disease. Phys Ther. 2016;96(4):494501. PubMed ID: 26381806 doi:10.2522/ptj.20150249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Peterson DS, Huisinga JM, Spain RI, Horak FB. Characterization of compensatory stepping in people with multiple sclerosis. Arch Phys Med Rehabil. 2016;97(4):513521. PubMed ID: 26603657 doi:10.1016/j.apmr.2015.10.103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Do MC, Breniere Y, Brenguier P. A biomechanical study of balance recovery during the fall forward. J Biomech. 1982;15(12):933939. PubMed ID: 7166553 doi:10.1016/0021-9290(82)90011-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Horak FB. The push and release test: an improved clinical postural stability test for patients with Parkinson’s disease. Mov Disord. 2004;19:170.

    • Search Google Scholar
    • Export Citation
  • 12.

    Jacobs JV, Horak FB, Van Tran K, Nutt JG. An alternative clinical postural stability test for patients with Parkinson’s disease. J Neurol. 2006;253(11):14041413. PubMed ID: 16788773 doi:10.1007/s00415-006-0224-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Valkovic P, Brozova H, Botzel K, Ruzicka E, Benetin J. Push-and-release test predicts Parkinson fallers and nonfallers better than the pull test: comparison in OFF and ON medication states. Mov Disord. 2008;23(10):14531457. PubMed ID: 18512752 doi:10.1002/mds.22131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Godi M, Arcolin I, Giardini M, Corna S, Schieppati M. Responsiveness and minimal clinically important difference of the Mini-BESTest in patients with Parkinson’s disease. Gait Posture. 2020;80:1419. PubMed ID: 32464537 doi:10.1016/j.gaitpost.2020.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    El-Gohary M, Peterson D, Gera G, Horak FB, Huisinga JM. Validity of the instrumented push and release test to quantify postural responses in persons with multiple sclerosis. Arch Phys Med Rehabil. 2017;98(7):13251331. PubMed ID: 28279660 doi:10.1016/j.apmr.2017.01.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Potter K, Anderberg L, Anderson D, et al. Reliability, validity, and responsiveness of the Balance Evaluation Systems Test (BESTest) in individuals with multiple sclerosis. Physiotherapy. 2018;104(1):142148. PubMed ID: 28888670 doi:10.1016/j.physio.2017.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Horak FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Phys Ther. 2009;89(5):484498. PubMed ID: 19329772 doi:10.2522/ptj.20080071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Smith BA, Carlson-Kuhta P, Horak FB. Consistency in administration and response for the backward push and release test: a clinical assessment of postural responses. Physiother Res Int. 2016;21(1):3646. PubMed ID: 25431128 doi:10.1002/pri.1615

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to improve the Balance Evaluation Systems Test: the mini-BESTest. J Rehabil Med. 2010;42(4):323331. PubMed ID: 20461334 doi:10.2340/16501977-0537

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Morris A, Cassidy B, Pelo R, et al. Reactive postural responses after mild traumatic brain injury and their association with musculoskeletal injury risk in collegiate athletes: a study protocol. Front Sports Act Living. 2020;2:574848. PubMed ID: 33345138 doi:10.3389/fspor.2020.574848

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    King L, Horak F. On the mini-BESTest: scoring and the reporting of total scores. Phys Ther. 2013;93(4):571575. PubMed ID: 23547173 doi:10.2522/ptj.2013.93.4.571

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):3746.

  • 23.

    Khamis H. Measures of association: how to choose? J Diagn Med Sonogr. 2008;24(3):155162.

  • 24.

    Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155163. PubMed ID: 27330520 doi:10.1016/j.jcm.2016.02.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hsiao-Wecksler ET, Robinovitch SN. The effect of step length on young and elderly women’s ability to recover balance. Clin Biomech. 2007;22(5):574580. doi:10.1016/j.clinbiomech.2007.01.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19):25562563. PubMed ID: 14625332 doi:10.1001/jama.290.19.2556

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    DeBeaumont L, Mongeon D, Tremblay S, et al. Persistent motor system abnormalities in formerly concussed athletes. J Athl Train. 2011;46(3):234240. doi:10.4085/1062-6050-46.3.234

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Fino PC, Nussbaum MA, Brolinson PG. Decreased high-frequency center-of-pressure complexity in recently concussed asymptomatic athletes. Gait Posture. 2016;50:6974. PubMed ID: 27580081 doi:10.1016/j.gaitpost.2016.08.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fino PC, Parrington L, Pitt W, et al. Detecting gait abnormalities after concussion or mild traumatic brain injury: a systematic review of single-task, dual-task, and complex gait. Gait Posture. 2018;62:157166. PubMed ID: 29550695 doi:10.1016/j.gaitpost.2018.03.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 471 471 229
Full Text Views 9 9 0
PDF Downloads 10 10 0