Understanding Athletic Trainers’ Knowledge, Intervention, and Barriers Toward Arthrogenic Muscle Inhibition

Click name to view affiliation

Justin L. Rush
Search for other papers by Justin L. Rush in
Current site
Google Scholar
PubMed
Close
,
David A. Sherman
Search for other papers by David A. Sherman in
Current site
Google Scholar
PubMed
Close
,
David M. Bazett-Jones
Search for other papers by David M. Bazett-Jones in
Current site
Google Scholar
PubMed
Close
,
Christopher D. Ingersoll
Search for other papers by Christopher D. Ingersoll in
Current site
Google Scholar
PubMed
Close
, and
Grant E. Norte
Search for other papers by Grant E. Norte in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Arthrogenic muscle inhibition (AMI) is a common neurophysiological response to joint injury. While athletic trainers (ATs) are constantly treating patients with AMI, it is unclear how clinicians are using the available evidence to treat the condition. Objective: To investigate ATs’ general knowledge, clinical practice, and barriers for treating AMI. Methods: A cross-sectional web-based survey was utilized. The survey was distributed to a random sample of 3000 ATs from the National Athletic Trainers’ Association and through social media. 143 board certified ATs (age: 34.6 [10.3] y; experience: 11.7 [9.8] y) from various clinical settings and educational backgrounds were included in the analysis. Results: One hundred one respondents were able to correctly identify the definition of AMI. The majority of these respondents correctly reported that joint effusion (n = 95, 94.1%) and abnormal activity from joint receptors (n = 91, 90.1%) resulted in AMI. Of the 101 respondents, only 58 (57.4%) reported using disinhibitory interventions to treat AMI. The most frequently used evidence supported interventions were transcutaneous electrical nerve stimulation (n = 38, 65.5%), neuromuscular electrical stimulation (n = 33, 56.9%), and focal joint cooling (n = 25, 43.1%). The interventions used correctly most often based on current evidence were neuromuscular electrical stimulation (n = 29/33, 87.9%) and transcutaneous electrical nerve stimulation (n = 26/38, 68.4%). Overall, difficulty quantifying AMI (n = 62, 61.24%) and lack of education (n = 71, 76.2%) were most frequently perceived as barriers. Respondents that did not use disinhibitory interventions perceived lack of experience treating AMI, understanding the terminology, and access to therapeutic modalities more often than the respondents that reported using disinhibitory interventions. Conclusion: Further education about concepts and treatment about AMI is warranted for ATs. Continued understanding of ATs’ clinical practice in regard to AMI may help identify gaps in athletic training clinical education.

Rush, Sherman, Bazett-Jones, and Norte are with the School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, OH, USA. Ingersoll is with the College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA.

Rush (Justin.Rush@rockets.utoledo.edu) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 271 KB)
  • Collapse
  • Expand
  • 1.

    Buckthorpe M, Tamisari A, Villa FD. A ten task-based progression in rehabilitation after ACL reconstruction: from post-surgery to return to play—a clinical commentary. Int J Sports Phys Ther. 2020;15(4):611623. PubMed ID: 33354394 doi:10.26603/ijspt20200611

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Palmieri-Smith RM, Cameron KL, DiStefano LJ, et al. The role of athletic trainers in preventing and managing posttraumatic osteoarthritis in physically active populations: a consensus statement of the athletic trainers’ osteoarthritis consortium. J Athl Train. 2017;52(6):610623. PubMed ID: 28653866 doi:10.4085/1062-6050-52.2.04

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lisee C, Lepley AS, Birchmeier T, O’Hagan K, Kuenze C. Quadriceps strength and volitional activation after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Health. 2019;11(2):163179. PubMed ID: 30638441 doi:10.1177/1941738118822739

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Stokes M, Young A. The contribution of reflex inhibition to arthrogenous muscle weakness. Clin Sci. 1984;67(1):714. doi:10.1042/cs0670007

  • 5.

    Hopkins JT, Ingersoll CD. Arthogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135159. doi:10.1123/jsr.9.2.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    McVey ED, Palmieri RM, Docherty CL, Zinder SM, Ingersoll CD. Arthrogenic muscle inhibition in the leg muscles of subjects exhibiting functional ankle instability. Foot Ankle Int. 2005;26(12):10551061. PubMed ID: 16390639 doi:10.1177/107110070502601210

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hart JM, Bessette M, Choi L, Hogan MV, Diduch D. Sensory response following knee joint damage in rabbits. BMC Musculoskelet Disord. 2014;15(1):139. PubMed ID: 24766654 doi:10.1186/1471-2474-15-139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Palmieri-Smith RM, Villwock M, Downie B, Hecht G, Zernicke R. Pain and effusion and quadriceps activation and strength. J Athl Train. 2013;48(2):186191. PubMed ID: 23672382 doi:10.4085/1062-6050-48.2.10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AM, White SE, Onate JA. Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2017;47(3):180189. PubMed ID: 27817301 doi:10.2519/jospt.2017.7003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Rush JL, Glaviano NR, Norte GE. Assessment of quadriceps corticomotor and spinal-reflexive excitability in individuals with a history of anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Med. 2021;51(5):961990. PubMed ID: 33400217 doi:10.1007/s40279-020-01403-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Sonnery-Cottet B, Saithna A, Quelard B, et al. Arthrogenic muscle inhibition after ACL reconstruction: a scoping review of the efficacy of interventions. Br J Sports Med. 2019;53(5):289298. PubMed ID: 30194224 doi:10.1136/bjsports-2017-098401

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Weiss A, Glaviano NR, Resch J, Saliba S. Reliability of a novel approach for quadriceps motor point assessment. Muscle Nerve. 2018;57(1):E1E7. PubMed ID: 28632896 doi:10.1002/mus.25728

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Pietrosimone BG, Hart JM, Saliba SA, Hertel J, Ingersoll CD. Immediate effects of transcutaneous electrical nerve stimulation and focal knee joint cooling on quadriceps activation. Med Sci Sports Exerc. 2009;41(6):11751181. PubMed ID: 19461552 doi:10.1249/MSS.0b013e3181982557

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hopkins JT, Ingersoll CD, Krause BA, Edwards JE, Cordova ML. Effect of knee joint effusion on quadriceps and soleus motoneuron pool excitability. Med Sci Sports Exerc. 2001;33(1):123126. PubMed ID: 11194097 doi:10.1097/00005768-200101000-00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Pietrosimone BG, Ingersoll CD. Focal knee joint cooling increases the quadriceps central activation ratio. J Sports Sci. 2009;27(8):873879. PubMed ID: 19449251 doi:10.1080/02640410902929374

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hurley MV, Jones DW, Newham DJ. Arthrogenic quadriceps inhibition and rehabilitation of patients with extensive traumatic knee injuries. Clin Sci. 1994;86(3):305310. doi:10.1042/cs0860305

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Cho BK, Park JK, Choi SM, Kang SW, SooHoo NF. The peroneal strength deficits in patients with chronic ankle instability compared to ankle sprain copers and normal individuals. Foot Ankle Surg. 2019;25(2):231236. PubMed ID: 29409189 doi:10.1016/j.fas.2017.10.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Eysenbach G. Improving the quality of web surveys: the checklist for reporting results of internet e-surveys (CHERRIES). J Med Internet Res. 2004;6(3):e34. PubMed ID: 15471760 doi:10.2196/jmir.6.3.e34

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Klykken LW, Pietrosimone BG, Kim KM, Ingersoll CD, Hertel J. Motor-neuron pool excitability of the lower leg muscles after acute lateral ankle sprain. J Athl Train. 2011;46(3):263269. PubMed ID: 21669095 doi:10.4085/1062-6050-46.3.263

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Kim KM, Kim JS, Cruz-Diaz D, Ryu S, Kang M, Taube W. Changes in spinal and corticospinal excitability in patients with chronic ankle instability: a systematic review with meta-analysis. J Clin Med. 2019;8(7):1037. doi:10.3390/jcm8071037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    de Oliveira Silva D, Magalhaes FH, Faria NC, et al. Vastus medialis Hoffmann reflex excitability is associated with pain level, self-reported function, and chronicity in women with patellofemoral pain. Arch Phys Med Rehabil. 2017;98(1):114119. PubMed ID: 27422350 doi:10.1016/j.apmr.2016.06.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6):828839. PubMed ID: 25693627 doi:10.1111/sms.12435

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Pietrosimone B, Loeser RF, Blackburn JT, et al. Biochemical markers of cartilage metabolism are associated with walking biomechanics 6-months following anterior cruciate ligament reconstruction. J Orthop Res. 2017;35(10):22882297. PubMed ID: 28150869 doi:10.1002/jor.23534

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins JT, Ingersoll CD, Edwards J, Klootwyk TE. Cryotherapy and transcutaneous electric neuromuscular stimulation decrease arthrogenic muscle inhibition of the vastus medialis after knee joint effusion. J Athl Train. 2002;37(1):2531. PubMed ID: 12937440

    • Search Google Scholar
    • Export Citation
  • 25.

    Pamukoff DN, Pietrosimone B, Lewek MD, et al. Whole-body and local muscle vibration immediately improve quadriceps function in individuals with anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2016;97(7):11211129. PubMed ID: 26869286 doi:10.1016/j.apmr.2016.01.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Grindstaff TL, Hertel J, Beazell JR, Magrum EM, Ingersoll CD. Effects of lumbopelvic joint manipulation on quadriceps activation and strength in healthy individuals. Man Ther. 2009;14(4):415420. PubMed ID: 18805726 doi:10.1016/j.math.2008.06.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Norte GE, Saliba SA, Hart JM. Immediate effects of therapeutic ultrasound on quadriceps spinal reflex excitability in patients with knee injury. Arch Phys Med Rehabil. 2015;96(9):15911598. PubMed ID: 25839089 doi:10.1016/j.apmr.2015.03.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Hart JM, Kuenze CM, Diduch DR, Ingersoll CD. Quadriceps muscle function after rehabilitation with cryotherapy in patients with anterior cruciate ligament reconstruction. J Athl Train. 2014;49(6):733739. PubMed ID: 25299442 doi:10.4085/1062-6050-49.3.39

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kelln BM, McKeon PO, Gontkof LM, Hertel J. Hand-held dynamometry: reliability of lower extremity muscle testing in healthy, physically active, young adults. J Sport Rehabil. 2008;17(2):160170. PubMed ID: 18515915 doi:10.1123/jsr.17.2.160

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3036 1001 127
Full Text Views 661 80 4
PDF Downloads 608 45 5