Gluteal Central Activation in Females With Patellofemoral Pain: A Preliminary Study

in Journal of Sport Rehabilitation

Click name to view affiliation

Neal R. Glaviano
Search for other papers by Neal R. Glaviano in
Current site
Google Scholar
PubMed
Close
and
Grant E. Norte
Search for other papers by Grant E. Norte in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Lesser hip muscle strength is commonly observed in females with patellofemoral pain (PFP) compared with females without PFP and is associated with poor subjective function and single-leg squat (SLS) biomechanics. Hip muscle weakness is theorized to be related to PFP, suggesting centrally mediated muscle inhibition may influence the observed weakness. The central activation ratio (CAR) is a common metric used to quantify muscle inhibition via burst superimposition. However, gluteal inhibition has yet to be evaluated using this approach in females with PFP. The study objectives are to (1) describe gluteal activation in the context of subjective function, hip strength, and squatting biomechanics and (2) examine the relationship of gluteal activation with subjective function and squatting biomechanics in females with PFP. Design: Cross-sectional. Methods: Seven females with PFP (age = 22.8 [3.6] y; mass = 69.4 [18.0] kg; height = 1.67 [0.05] m, duration of pain = 6–96 mo) completed this study. Subjective function was assessed with the Anterior Knee Pain Scale, while fear-avoidance beliefs were assessed with the Fear-Avoidance Belief Questionnaire physical activity and work subscales. Biomechanical function was assessed with peak hip and knee angles and moments in the sagittal and frontal planes during SLS. Gluteus medius (GMed) and gluteus maximus (GMax) activation were assessed with the CAR. Descriptive statistics were calculated, and relationships between variables were assessed with Spearman rho correlations. Results: The CAR of GMed and GMax was 90.5% (8.1%) and 84.0% (6.3%), respectively. Lesser GMed CAR was strongly associated with greater hip adduction during SLS (ρ = −.775, P = .02) and greater fear-avoidance beliefs—physical activity subscale (ρ = −.764, P = .018). Conclusion: We found a wide range in GMed and GMax activation across females with PFP. Lesser GMed activation was associated with greater hip adduction during SLS and fear of physical activity, suggesting that gluteal inhibition should be assessed in patients with PFP.

Glaviano is with the Department of Kinesiology, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA. Norte is with the School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, OH, USA.

Glaviano (Neal.glaviano@uconn.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Smith BE, Selfe J, Thacker D, et al. Incidence and prevalence of patellofemoral pain: a systematic review and meta-analysis. PLoS One. 2018;13(1):e0190892. PubMed ID: 29324820 doi:10.1371/journal.pone.0190892

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Glaviano NR, Kew M, Hart JM, Saliba S. Demographic and epidemiological trends in patellofemoral pain. Int J Sports Phys Ther. 2015;10(3):281290. PubMed ID: 26075143

    • Search Google Scholar
    • Export Citation
  • 3.

    Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95101. PubMed ID: 11916889 doi:10.1136/bjsm.36.2.95

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Boling M, Padua D, Marshall S, Guskiewicz K, Pyne S, Beutler A. Gender differences in the incidence and prevalence of patellofemoral pain syndrome. Scand J Med Sci Sports. 2010;20(5):725730. PubMed ID: 19765240 doi:10.1111/j.1600-0838.2009.00996.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Smith BE, Moffatt F, Hendrick P, et al. The experience of living with patellofemoral pain-loss, confusion and fear-avoidance: a UK qualitative study. BMJ Open. 2018;8(1):e018624. PubMed ID: 29362256 doi:10.1136/bmjopen-2017-018624

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Coburn SL, Barton CJ, Filbay SR, Hart HF, Rathleff MS, Crossley KM. Quality of life in individuals with patellofemoral pain: a systematic review including meta-analysis. Phys Ther Sport. 2018;33:96108. PubMed ID: 30059951 doi:10.1016/j.ptsp.2018.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Glaviano NR, Baellow A, Saliba S. Physical activity levels in individuals with and without patellofemoral pain. Phys Ther Sport. 2017;27:1216. PubMed ID: 28780340 doi:10.1016/j.ptsp.2017.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Glaviano NR, Saliba S. Relationship between lower extremity strength and subjective function in individuals with patellofemoral pain. J Sport Rehabil. 2018;27(4):327333. PubMed ID: 28513275 doi:10.1123/jsr.2016-0177

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Maclachlan LR, Collins NJ, Matthews MLG, Hodges PW, Vicenzino B. The psychological features of patellofemoral pain: a systematic review. Br J Sports Med. 2017;51(9):732742. PubMed ID: 28320733 doi:10.1136/bjsports-2016-096705

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Wyndow N, Collins N, Vicenzino B, Tucker K, Crossley K. Is there a biomechanical link between patellofemoral pain and osteoarthritis? A narrative review. Sports Med. 2016;46(12):17971808. PubMed ID: 27142536 doi:10.1007/s40279-016-0545-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Boling MC, Padua DA, Alexander Creighton R. Concentric and eccentric torque of the hip musculature in individuals with and without patellofemoral pain. J Athl Train. 2009;44(1):713. PubMed ID: 19180213 doi:10.4085/1062-6050-44.1.7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Nakagawa TH, Moriya ET, Maciel CD, Serrao FV. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2012;42(6):491501. PubMed ID: 22402604 doi:10.2519/jospt.2012.3987

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Stickler L, Finley M, Gulgin H. Relationship between hip and core strength and frontal plane alignment during a single leg squat. Phys Ther Sport. 2015;16(1):6671. PubMed ID: 25070759 doi:10.1016/j.ptsp.2014.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hollman JH, Hohl JM, Kraft JL, Strauss JD, Traver KJ. Modulation of frontal-plane knee kinematics by hip-extensor strength and gluteus maximus recruitment during a jump-landing task in healthy women. J Sport Rehabil. 2013;22(3):184190. PubMed ID: 23579368 doi:10.1123/jsr.22.3.184

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Nakagawa TH, Serrao FV, Maciel CD, Powers CM. Hip and knee kinematics are associated with pain and self-reported functional status in males and females with patellofemoral pain. Int J Sports Med. 2013;34(11):9971002. PubMed ID: 23771827 doi:10.1055/s-0033-1334966

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Bolgla LA, Boling MC, Mace KL, DiStefano MJ, Fithian DC, Powers CM. National Athletic Trainers’ Association Position Statement: management of individuals with patellofemoral pain. J Athl Train. 2018;53(9):820836. PubMed ID: 30372640 doi:10.4085/1062-6050-231-15

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Lankhorst NE, van Middelkoop M, Crossley KM, et al. Factors that predict a poor outcome 5–8 years after the diagnosis of patellofemoral pain: a multicentre observational analysis. Br J Sports Med. 2015;50(14):881886. PubMed ID: 26463119 doi:10.1136/bjsports-2015-094664

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hamstra-Wright KL, Aydemir B, Earl-Boehm J, Bolgla L, Emery C, Ferber R. Lasting improvement of patient-reported outcomes 6 months after patellofemoral pain rehabilitation. J Sport Rehabil. 2017;26(4):223233. PubMed ID: 27632841 doi:10.1123/jsr.2015-0176

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Ferber R, Kendall KD, Farr L. Changes in knee biomechanics after a hip-abductor strengthening protocol for runners with patellofemoral pain syndrome. J Athl Train. 2011;46(2):142149. PubMed ID: 21391799 doi:10.4085/1062-6050-46.2.142

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Glaviano NR, Marshall AN, Mangum LC, et al. Improvements in lower-extremity function following a rehabilitation program with patterned electrical neuromuscular stimulation in females with patellofemoral pain: a randomized controlled trial. J Sport Rehabil. 2020;29(8):10751085. PubMed ID: 31825893 doi:10.1123/jsr.2019-0278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Herbst KA, Barber Foss KD, Fader L, et al. Hip strength is greater in athletes who subsequently develop patellofemoral pain. Am J Sports Med. 2015;43(11):27472752. PubMed ID: 26330570 doi:10.1177/0363546515599628

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Glaviano NR, Bazett-Jones DM, Norte G. Gluteal muscle inhibition: consequences of patellofemoral pain? Med Hypotheses. 2019;126:914. PubMed ID: 31010506 doi:10.1016/j.mehy.2019.02.046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lepley AS, Ericksen HM, Sohn DH, Pietrosimone BG. Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. Knee. 2014;21(3):736742. PubMed ID: 24618459 doi:10.1016/j.knee.2014.02.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Stackhouse SK, Dean JC, Lee SC, Binder-MacLeod SA. Measurement of central activation failure of the quadriceps femoris in healthy adults. Muscle Nerve. 2000;23(11):17061712. PubMed ID: 11054749 doi:10.1002/1097-4598(200011)23:11<1706::AID-MUS6>3.0.CO;2-B

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Bolgla LA, Earl-Boehm J, Emery C, Hamstra-Wright K, Ferber R. Pain, function, and strength outcomes for males and females with patellofemoral pain who participate in either a hip/core- or knee-based rehabilitation program. Int J Sports Phys Ther. 2016;11(6):926935. PubMed ID: 27904794

    • Search Google Scholar
    • Export Citation
  • 26.

    Gilfeather D, Norte G, Ingersoll CD, Glaviano NR. Central activation ratio is a reliable measure for gluteal neuromuscular function. J Sport Rehabil. 2020;29(7):956962. PubMed ID: 31775118 doi:10.1123/jsr.2019-0243

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Norte GE, Frye JL, Hart JM. Reliability of the superimposed-burst technique in patients with patellofemoral pain: a technical report. J Athl Train. 2015;50(11):12071211. PubMed ID: 26636730 doi:10.4085/1062-6050-50.10.03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Crossley KM, Stefanik JJ, Selfe J, et al. 2016 Patellofemoral pain consensus statement from the 4th International Patellofemoral Pain Research Retreat, Manchester. Part 1: terminology, definitions, clinical examination, natural history, patellofemoral osteoarthritis and patient-reported outcome measures. Br J Sports Med. 2016;50(14):839843. PubMed ID: 27343241 doi:10.1136/bjsports-2016-096384

    • Search Google Scholar
    • Export Citation
  • 29.

    Ferreira AS, de Oliveira Silva D, Priore LBD, et al. Differences in pain and function between adolescent athletes and physically active non-athletes with patellofemoral pain. Phys Ther Sport. 2018;33:7075. PubMed ID: 30025378 doi:10.1016/j.ptsp.2018.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Crossley KM, Bennell KL, Cowan SM, Green S. Analysis of outcome measures for persons with patellofemoral pain: which are reliable and valid? Arch Phys Med Rehabil. 2004;85(5):815822. PubMed ID: 15129407 doi:10.1016/S0003-9993(03)00613-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Crossley KM, Macri EM, Cowan SM, Collins NJ, Roos EM. The patellofemoral pain and osteoarthritis subscale of the KOOS (KOOS-PF): development and validation using the COSMIN checklist. Br J Sports Med. 2018;52(17):11301136. PubMed ID: 28258176 doi:10.1136/bjsports-2016-096776

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Briggs KK, Lysholm J, Tegner Y, Rodkey WG, Kocher MS, Steadman JR. The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am J Sports Med. 2009;37(5):890897. PubMed ID: 19261899 doi:10.1177/0363546508330143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Selfe J, Callaghan M, Witvrouw E, et al. Targeted interventions for patellofemoral pain syndrome (TIPPS): classification of clinical subgroups. BMJ Open. 2013;3(9):e003795. doi:10.1136/bmjopen-2013-003795

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Selhorst M, Rice W, Degenhart T, Jackowski M, Tatman M. Evaluation of a treatment algorithm for patients with patellofemoral pain syndrome: a pilot study. Int J Sports Phys Ther. 2015;10(2):178188. PubMed ID: 25883866

    • Search Google Scholar
    • Export Citation
  • 36.

    Lisee C, Lepley AS, Birchmeier T, O’Hagan K, Kuenze C. Quadriceps strength and volitional activation after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Health. 2019;11(2):163179. PubMed ID: 30638441 doi:10.1177/1941738118822739

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Greuel H, Herrington L, Liu A, Jones RK. How does acute pain influence biomechanics and quadriceps function in individuals with patellofemoral pain? Knee. 2019;26(2):330338. PubMed ID: 30712962 doi:10.1016/j.knee.2018.12.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Seeley MK, Son SJ, Kim H, Ty Hopkins J. Biomechanics differ for individuals with similar self-reported characteristics of patellofemoral pain during a high-demand multiplanar movement task. J Sport Rehabil. 2021;30(6):860869. doi:10.1123/jsr.2020-0220

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Luc BA, Harkey MH, Arguelles GD, Blackburn JT, Ryan ED, Pietrosimone B. Measuring voluntary quadriceps activation: effect of visual feedback and stimulus delivery. J Electromyogr Kinesiol. 2016;26:7381. PubMed ID: 26597088 doi:10.1016/j.jelekin.2015.10.006

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1282 1036 184
Full Text Views 479 476 4
PDF Downloads 535 529 2