A Review of the Relationships Between Knee Pain and Movement Neuromechanics

in Journal of Sport Rehabilitation

Click name to view affiliation

Matthew K. Seeley
Search for other papers by Matthew K. Seeley in
Current site
Google Scholar
PubMed
Close
,
Hyunwook Lee
Search for other papers by Hyunwook Lee in
Current site
Google Scholar
PubMed
Close
,
S. Jun Son
Search for other papers by S. Jun Son in
Current site
Google Scholar
PubMed
Close
,
Mattie Timmerman
Search for other papers by Mattie Timmerman in
Current site
Google Scholar
PubMed
Close
,
Mariah Lindsay
Search for other papers by Mariah Lindsay in
Current site
Google Scholar
PubMed
Close
, and
J. Ty Hopkins
Search for other papers by J. Ty Hopkins in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Knee injury and disease are common, debilitating, and expensive. Pain is a chief symptom of knee injury and disease and likely contributes to arthrogenic muscle inhibition. Joint pain alters isolated motor function, muscular strength, and movement biomechanics. Because knee pain influences biomechanics, it likely also influences long-term knee joint health. Objective: The purpose of this article is 2-fold: (1) review effects of knee pain on lower-extremity muscular activation and corresponding biomechanics and (2) consider potential implications of neuromechanical alterations associated with knee pain for long-term knee joint health. Experimental knee pain is emphasized because it has been used to mimic clinical knee pain and clarify independent effects of knee pain. Three common sources of clinical knee pain are also discussed: patellofemoral pain, anterior cruciate ligament injury and reconstruction, and knee osteoarthritis. Data Sources: The PubMed, Web of Science, and SPORTDiscus databases were searched for articles relating to the purpose of this article. Conclusion: Researchers have consistently reported that knee pain alters neuromuscular activation, often in the form of inhibition that likely occurs via voluntary and involuntary neural pathways. The effects of knee pain on quadriceps activation have been studied extensively. Knee pain decreases voluntary and involuntary quadriceps activation and strength and alters the biomechanics of various movement tasks. If allowed to persist, these neuromechanical alterations might change the response of articular cartilage to joint loads during movement and detrimentally affect long-term knee joint health. Physical rehabilitation professionals should consider neuromechanical effects of knee pain when treating knee injury and disease. Resolution of joint pain can likely help to restore normal movement neuromechanics and potentially improve long-term knee joint health and should be a top priority.

Seeley, Lee, Timmerman, Lindsay, and Hopkins are with the Department of Exercise Sciences, Brigham Young University, Provo, UT, USA. Son is with the Graduate School of Sports Medicine, CHA University, Seongnam-si, Gyeonggi-do, Korea.

Seeley (matt_seeley@byu.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Hopkins JT, Christopher DI. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135159. doi:10.1123/jsr.9.2.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ingram JG, Fields SK, Yard EE, Comstock RD. Epidemiology of knee injuries among boys and girls in US high school athletics. Am J Sports Med. 2008;36(6):11161122. PubMed ID: 18375784 doi:10.1177/0363546508314400

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Bennell K, Hodges P, Mellor R, Bexander C, Souvlis T. The nature of anterior knee pain following injection of hypertonic saline into the infrapatellar fat pad. J Orthop Res. 2004;22(1):116121. PubMed ID: 14656669 doi:10.1016/S0736-0266(03)00162-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Garland A, Jordan JE, Necheles J, et al. Hypertonicity, but not hypothermia, elicits substance P release from rat C-fiber neurons in primary culture. J Clin Invest. 1995;95(5):23592366. PubMed ID: 7537764 doi:10.1172/JCI117928

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Kumazawa T, Mizumura K. Thin-fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol. 1977;273(1):179194. PubMed ID: 599419 doi:10.1113/jphysiol.1977.sp012088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Paintal AS. Functional analysis of Group III afferent fibres of mammalian muscles. J Physiol. 1960;152(2):250270. doi:10.1113/jphysiol.1960.sp006486

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Denning WM, Woodland S, Winward JG, et al. The influence of experimental anterior knee pain during running on electromyography and articular cartilage metabolism. Osteoarthritis Cartilage. 2014;22(8):11111119. PubMed ID: 24907621 doi:10.1016/j.joca.2014.05.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hodges PW, Mellor R, Crossley K, Bennell K. Pain induced by injection of hypertonic saline into the infrapatellar fat pad and effect on coordination of the quadriceps muscles. Arthritis Care Res. 2009;61(1):7077. doi:10.1002/art.24089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Park J, Hopkins JT. Induced anterior knee pain immediately reduces involuntary and voluntary quadriceps activation. Clin J Sport Med. 2013;23(1):1924. PubMed ID: 23103783 doi:10.1097/JSM.0b013e3182717b7b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Kwon S, Bruening DA, Morrin SJ, Kunz DM, Hopkins JT, Seeley MK. Simultaneous ice and transcutaneous electrical nerve stimulation decrease anterior knee pain during running but do not affect running kinematics or associated muscle inhibition. Clin Biomech. 2020;72:17. doi:10.1016/j.clinbiomech.2019.11.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Son SJ, Kim H, Seeley MK, Feland JB, Hopkins JT. Effects of transcutaneous electrical nerve stimulation on quadriceps function in individuals with experimental knee pain. Scand J Med Sci Sports. 2016;26(9):10801090. PubMed ID: 26346597 doi:10.1111/sms.12539

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Salomoni SE, Ejaz A, Laursen AC, Graven-Nielsen T. Variability of three-dimensional forces increase during experimental knee pain. Eur J Appl Physiol. 2013;113(3):567575. PubMed ID: 22843218 doi:10.1007/s00421-012-2461-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Palmieri-Smith RM, Villwock M, Downie B, Hecht G, Zernicke R. Pain and effusion and quadriceps activation and strength. J Athl Train. 2013;48(2):186191. PubMed ID: 23672382 doi:10.4085/1062-6050-48.2.10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    de Oliveira Silva D, Magalhães FH, Faria NC, et al. Lower amplitude of the Hoffmann reflex in women with patellofemoral pain: thinking beyond proximal, local, and distal factors. Arch Phys Med Rehabil. 2016;97(7):11151120. PubMed ID: 26763946 doi:10.1016/j.apmr.2015.12.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kent-Braun JA, Le Blanc R. Quantitation of central activation failure during maximal voluntary contractions in humans. Muscle Nerve. 1996;19(7):861869. PubMed ID: 8965840 doi:10.1002/(SICI)1097-4598(199607)19:7%2C861::AID-MUS8%2E3.0.CO;2-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gandevia SC. Some central and peripheral factors affecting human motoneuronal output in neuromuscular fatigue. Sports Med. 1992;13(2):9398. PubMed ID: 1561512 doi:10.2165/00007256-199213020-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Jones DA, Bigland-Ritchie B, Edwards RHT. Excitation frequency and muscle fatigue: mechanical responses during voluntary and stimulated contractions. Exp Neurol. 1979;64(2):401413. PubMed ID: 428515 doi:10.1016/0014-4886(79)90279-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Rice DA, Mannion J, Lewis GN, McNair PJ, Fort L. Experimental knee pain impairs joint torque and rate of force development in isometric and isokinetic muscle activation. Eur J Appl Physiol. 2019;119(9):20652073. PubMed ID: 31332518 doi:10.1007/s00421-019-04195-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Rice DA, McNair PJ, Lewis GN, Mannion J. Experimental knee pain impairs submaximal force steadiness in isometric, eccentric, and concentric muscle actions. Arthritis Res Ther. 2015;17(1):259. doi:10.1186/s13075-015-0768-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Salomoni S, Tucker K, Hug F, McPhee M, Hodges P. Reduced maximal force during acute anterior knee pain is associated with deficits in voluntary muscle activation. PLoS One. 2016;11(8):e0161487e0161487. PubMed ID: 27559737 doi:10.1371/journal.pone.0161487

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Henriksen M, Rosager S, Aaboe J, Graven-Nielsen T, Bliddal H. Experimental knee pain reduces muscle strength. J Pain. 2011;12(4):460467. PubMed ID: 21146464 doi:10.1016/j.jpain.2010.10.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Sørensen TJ, Langberg H, Hodges PW, Bliddal H, Henriksen M. Experimental knee joint pain during strength training and muscle strength gain in healthy subjects: a randomized controlled trial. Arthritis Care Res. 2012;64(1):108116. doi:10.1002/acr.20618

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Salomoni SE, Graven-Nielsen T. Experimental muscle pain increases normalized variability of multidirectional forces during isometric contractions. Eur J Appl Physiol. 2012;112(10):36073617. PubMed ID: 22331280 doi:10.1007/s00421-012-2343-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Park J, Denning WM, Pitt JD, Francom D, Hopkins JT, Seeley MK. Effects of experimental anterior knee pain on muscle activation during landing and jumping performed at various intensities. J Sport Rehabil. 2017;26(1):7893. PubMed ID: 27632828 doi:10.1123/jsr.2015-0119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hirata RP, Arendt-Nielsen L, Shiozawa S, Graven-Nielsen T. Experimental knee pain impairs postural stability during quiet stance but not after perturbations. Eur J Appl Physiol. 2012;112(7):25112521. PubMed ID: 22075641 doi:10.1007/s00421-011-2226-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hirata RP, Ervilha UF, Arendt-Nielsen L, Graven-Nielsen T. Experimental muscle pain challenges the postural stability during quiet stance and unexpected posture perturbation. J Pain. 2011;12(8):911919. PubMed ID: 21680253 doi:10.1016/j.jpain.2011.02.356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Shiozawa S, Hirata RP, Jeppesen JB, Graven-Nielsen T. Impaired anticipatory postural adjustments due to experimental infrapatellar fat pad pain. Eur J Pain. 2015;19(9):13621371. PubMed ID: 25708561 doi:10.1002/ejp.667

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Hurley MV, Scott DL, Rees J, Newham DJ. Sensorimotor changes and functional performance in patients with knee osteoarthritis. Ann Rheum Dis. 1997;56(11):641. PubMed ID: 9462165 doi:10.1136/ard.56.11.641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Heiden TL, Lloyd DG, Ackland TR. Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait. Clin Biomech. 2009;24(10):833841. doi:10.1016/j.clinbiomech.2009.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hortobágyi T, Westerkamp L, Beam S, et al. Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis. Clin Biomech. 2005;20(1):97104. doi:10.1016/j.clinbiomech.2004.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Tayfur B, Charuphongsa C, Morrissey D, Miller SC. Neuromuscular function of the knee joint following knee injuries: does it ever get back to normal? A systematic review with meta-analyses. Sports Med. 2021;51(2):321338. PubMed ID: 33247378 doi:10.1007/s40279-020-01386-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Pei-An Y, Fan C-H, Kuo L-T, et al. Differences in gait and muscle strength of patients with acute and chronic anterior cruciate ligament injury. Clin Biomech. 2020;80:105161. doi:10.1016/j.clinbiomech.2020.105161

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Kim S, Kim D, Park J. Knee joint and quadriceps dysfunction in individuals with anterior knee pain, anterior cruciate ligament reconstruction, and meniscus surgery: a cross-sectional study. J Sport Rehabil. 2021;30(1):112119. doi:10.1123/jsr.2018-0482

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Cristiani R, Mikkelsen C, Edman G, Forssblad M, Engström B, Stålman A. Age, gender, quadriceps strength and hop test performance are the most important factors affecting the achievement of a patient-acceptable symptom state after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2020;28(2):369380. PubMed ID: 31230125 doi:10.1007/s00167-019-05576-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Brunst C, Ithurburn MP, Zbojniewicz AM, Paterno MV, Schmitt LC. Return-to-sport quadriceps strength symmetry impacts 5-year cartilage integrity after anterior cruciate ligament reconstruction: a preliminary analysis [published online ahead of print April 8, 2021]. J Orthop Res. doi:10.1002/jor.25029

    • Search Google Scholar
    • Export Citation
  • 36.

    Everhart JS, DiBartola AC, Swank K, et al. Cartilage damage at the time of anterior cruciate ligament reconstruction is associated with weaker quadriceps function and lower risk of future ACL injury. Knee Surg Sports Traumatol Arthrosc. 2020;28(2):576583. PubMed ID: 31598765 doi:10.1007/s00167-019-05739-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Wang HJ, Ao YF, Jiang D, et al. Relationship between quadriceps strength and patellofemoral joint chondral lesions after anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43(9):22862292. PubMed ID: 26093005 doi:10.1177/0363546515588316

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Culvenor AG, Segal NA, Guermazi A, et al. Sex-specific influence of quadriceps weakness on worsening patellofemoral and tibiofemoral cartilage damage: a prospective cohort study. Arthritis Care Res. 2019;71(10):13601365. doi:10.1002/acr.23773

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Chin C, Sayre EC, Guermazi A, et al. Quadriceps weakness and risk of knee cartilage loss seen on magnetic resonance imaging in a population-based cohort with knee pain. J Rheumatol. 2019;46(2):198203. PubMed ID: 30275263 doi:10.3899/jrheum.170875

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Souza RB, Powers CM. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39(1):1219. PubMed ID: 19131677 doi:10.2519/jospt.2009.2885

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Willson JD, Kernozek TW, Arndt RL, Reznichek DA, Scott Straker J. Gluteal muscle activation during running in females with and without patellofemoral pain syndrome. Clin Biomech. 2011;26(7):735740. doi:10.1016/j.clinbiomech.2011.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Mirzaie GH, Rahimi A, Kajbafvala M, Manshadi FD, Kalantari KK, Saidee A. Electromyographic activity of the hip and knee muscles during functional tasks in males with and without patellofemoral pain. J Bodyw Mov Ther. 2019;23(1):5458. PubMed ID: 30691762 doi:10.1016/j.jbmt.2018.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Baellow A, Glaviano NR, Hertel J, Saliba SA. Lower extremity biomechanics during a drop-vertical jump and muscle strength in women with patellofemoral pain. J Athl Train. 2020;55(6):615622. PubMed ID: 32320284 doi:10.4085/1062-6050-476-18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Glaviano NR, Bazett-Jones DM, Norte G. Gluteal muscle inhibition: consequences of patellofemoral pain? Med Hypotheses. 2019;126:914. PubMed ID: 31010506 doi:10.1016/j.mehy.2019.02.046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Wyndow N, Collins N, Vicenzino B, Tucker K, Crossley K. Is there a biomechanical link between patellofemoral pain and osteoarthritis? A narrative review. Sports Med. 2016;46(12):17971808. PubMed ID: 27142536 doi:10.1007/s40279-016-0545-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    De Wit B, De Clercq D, Aerts P. Biomechanical analysis of the stance phase during barefoot and shod running. J Biomech. 2000;33(3):269278. PubMed ID: 10673110 doi:10.1016/S0021-9290(99)00192-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Lewek M, Rudolph K, Axe M, Snyder-Mackler L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech. 2002;17(1):5663. doi:10.1016/S0268-0033(01)00097-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    de Oliveira Silva D, Barton CJ, Briani RV, et al. Kinesiophobia, but not strength is associated with altered movement in women with patellofemoral pain. Gait Posture. 2019;68:15. PubMed ID: 30408709 doi:10.1016/j.gaitpost.2018.10.033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Trigsted SM, Cook DB, Pickett KA, Cadmus-Bertram L, Dunn WR, Bell DR. Greater fear of reinjury is related to stiffened jump-landing biomechanics and muscle activation in women after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2018;26(12):36823689. PubMed ID: 29700560 doi:10.1007/s00167-018-4950-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Maclachlan LR, Collins NJ, Hodges PW, Vicenzino B. Psychological and pain profiles in persons with patellofemoral pain as the primary symptom. Eur J Pain. 2020;24(6):11821196. PubMed ID: 32223042 doi:10.1002/ejp.1563

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Moseley GL, Nicholas MK, Hodges PW. Does anticipation of back pain predispose to back trouble? Brain. 2004;127(10):23392347. doi:10.1093/brain/awh248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Seeley MK, Park J, King D, Hopkins JT. A novel experimental knee-pain model affects perceived pain and movement biomechanics. J Athl Train. 2013;48(3):337345. PubMed ID: 23675793 doi:10.4085/1062-6050-48.2.02

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Son SJ, Kim H, Seeley MK, Hopkins JT. Efficacy of sensory transcutaneous electrical nerve stimulation on perceived pain and gait patterns in individuals with experimental knee pain. Arch Phys Med Rehabil. 2017;98(1):2535. PubMed ID: 27343344 doi:10.1016/j.apmr.2016.05.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Mølgaard CM, Graven-Nielsen T, Simonsen O, Kersting UG. Potential interaction of experimental knee pain and laterally wedged insoles for knee off-loading during walking. Clin Biomech. 2014;29(8):848854. doi:10.1016/j.clinbiomech.2014.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Henriksen M, Graven-Nielsen T, Aaboe J, Andriacchi TP, Bliddal H. Gait changes in patients with knee osteoarthritis are replicated by experimental knee pain. Arthritis Care Res. 2010;62(4):501509. doi:10.1002/acr.20033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Chang AH, Moisio KC, Chmiel JS, et al. External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthritis Cartilage. 2015;23(7):10991106. PubMed ID: 25677110 doi:10.1016/j.joca.2015.02.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Foroughi N, Smith R, Vanwanseele B. The association of external knee adduction moment with biomechanical variables in osteoarthritis: a systematic review. Knee. 2009;16(5):303309. PubMed ID: 19321348 doi:10.1016/j.knee.2008.12.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Childs JD, Sparto PJ, Fitzgerald GK, Bizzini M, Irrgang JJ. Alterations in lower extremity movement and muscle activation patterns in individuals with knee osteoarthritis. Clin Biomech. 2004;19(1):4449. doi:10.1016/j.clinbiomech.2003.08.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Mündermann A, Dyrby CO, Andriacchi TP. Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum. 2005;52(9):28352844. PubMed ID: 16145666 doi:10.1002/art.21262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Kaufman KR, Hughes C, Morrey BF, Morrey M, An K-N. Gait characteristics of patients with knee osteoarthritis. J Biomech. 2001;34(7):907915. PubMed ID: 11410174 doi:10.1016/S0021-9290(01)00036-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Noyes FR, Mooar PA, Matthews DS, Butler DL. The symptomatic anterior cruciate-deficient knee. Part I: the long-term functional disability in athletically active individuals. J Bone Joint Surg Am. 1983;65(2):154162. PubMed ID: 6687391 doi:10.2106/00004623-198365020-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Roewer BD, Di Stasi SL, Snyder-Mackler L. Quadriceps strength and weight acceptance strategies continue to improve two years after anterior cruciate ligament reconstruction. J Biomech. 2011;44(10):19481953. PubMed ID: 21592482 doi:10.1016/j.jbiomech.2011.04.037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Davis-Wilson HC, Johnston CD, Young E, et al. Effects of BMI on walking speed and gait biomechanics following ACL reconstruction. Med Sci Sports Exerc. 2021;53(1):108114. PubMed ID: 32826633 doi:10.1249/MSS.0000000000002460

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Pietrosimone B, Seeley MK, Johnston C, Pfeiffer SJ, Spang JT, Blackburn JT. Walking ground reaction force post-ACL reconstruction: analysis of time and symptoms. Med Sci Sports Exerc. 2019;51(2):246254. PubMed ID: 30157111 doi:10.1249/MSS.0000000000001776

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Lebleu J, Fonkoue L, Bandolo E, et al. Lower limb kinematics improvement after genicular nerve blockade in patients with knee osteoarthritis: a milestone study using inertial sensors. BMC Musculoskelet Disord. 2020;21(1):822. PubMed ID: 33287783 doi:10.1186/s12891-020-03836-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Liang J, Lang S, Zheng Y, et al. The effect of anti-gravity treadmill training for knee osteoarthritis rehabilitation on joint pain, gait, and EMG: case report. Medicine (Baltimore). 2019;98(18):e15386. doi:10.1097/MD.0000000000015386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Boyer KA, Angst MS, Asay J, Giori NJ, Andriacchi TP. Sensitivity of gait parameters to the effects of anti-inflammatory and opioid treatments in knee osteoarthritis patients. J Orthop Res. 2012;30(7):11181124. PubMed ID: 22179861 doi:10.1002/jor.22037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Barton CJ, Levinger P, Menz HB, Webster KE. Kinematic gait characteristics associated with patellofemoral pain syndrome: a systematic review. Gait Posture. 2009;30(4):405416. PubMed ID: 19651515 doi:10.1016/j.gaitpost.2009.07.109

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Neal BS, Barton CJ, Gallie R, O’Halloran P, Morrissey D. Runners with patellofemoral pain have altered biomechanics which targeted interventions can modify: a systematic review and meta-analysis. Gait Posture. 2016;45:6982. PubMed ID: 26979886 doi:10.1016/j.gaitpost.2015.11.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Dierks TA, Manal KT, Hamill J, Davis I. Lower extremity kinematics in runners with patellofemoral pain during a prolonged run. Med Sci Sports Exerc. 2011;43(4):693700. PubMed ID: 20798656 doi:10.1249/MSS.0b013e3181f744f5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Noehren B, Pohl MB, Sanchez Z, Cunningham T, Lattermann C. Proximal and distal kinematics in female runners with patellofemoral pain. Clin Biomech. 2012;27(4):366371. doi:10.1016/j.clinbiomech.2011.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Bazett-Jones DM, Huddleston W, Cobb S, O’Connor K, Earl-Boehm JE. Acute responses of strength and running mechanics to increasing and decreasing pain in patients with patellofemoral pain. J Athl Train. 2017;52(5):411421. PubMed ID: 28388232 doi:10.4085/1062-6050-53.3.04

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Bazett-Jones DM, Cobb SC, Huddleston WE, O’Connor KM, Armstrong BSR, Earl-Boehm JE. Effect of patellofemoral pain on strength and mechanics after an exhaustive run. Med Sci Sports Exerc. 2013;45(7):13311339. PubMed ID: 23377834 doi:10.1249/MSS.0b013e3182880019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Noehren B, Sanchez Z, Cunningham T, McKeon PO. The effect of pain on hip and knee kinematics during running in females with chronic patellofemoral pain. Gait Posture. 2012;36(3):596599. PubMed ID: 22749951 doi:10.1016/j.gaitpost.2012.05.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Sinclair J, Janssen J, Richards JD, Butters B, Taylor PJ, Hobbs SJ. Effects of a 4-week intervention using semi-custom insoles on perceived pain and patellofemoral loading in targeted subgroups of recreational runners with patellofemoral pain. Phys Ther Sport. 2018;34:2127. PubMed ID: 30142623 doi:10.1016/j.ptsp.2018.08.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Briani RV, Cannon J, Waiteman MC, Negrão Filho RdF, Magalhães FH, de Azevedo FM. Influence of the exacerbation of patellofemoral pain on trunk kinematics and lower limb mechanics during stair negotiation. Gait Posture. 2021;83:8387. PubMed ID: 33099135 doi:10.1016/j.gaitpost.2020.10.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Seeley MK, Denning WM, Garner K, Park J, Horton Z, Hopkins JT. Anterior knee pain independently alters landing and jumping biomechanics. Clin Biomech. 2021;89:105458. doi:10.1016/j.clinbiomech.2021.105458

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Kuntze G, Nettel-Aguirre A, Brooks J, et al. Vertical drop jump performance in youth with juvenile idiopathic arthritis. Arthritis Care Res. 2021;73(7):955963. doi:10.1002/acr.24219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    King MG, Schache AG, Semciw AI, et al. Lower-limb work during high- and low-impact activities in hip-related pain: associations with sex and symptom severity. Gait Posture. 2021;83:18. PubMed ID: 33032182 doi:10.1016/j.gaitpost.2020.09.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Alvim FC, Muniz AMdS, Lucareli PRG, Menegaldo LL. Kinematics and muscle forces in women with patellofemoral pain during the propulsion phase of the single leg triple hop test. Gait Posture. 2019;73:108115. PubMed ID: 31323618 doi:10.1016/j.gaitpost.2019.07.193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    dos Reis AC, Correa JCF, Bley AS, Rabelo NDdA, Fukuda TY, Lucareli PRG. Kinematic and kinetic analysis of the single-leg triple hop test in women with and without patellofemoral pain. J Orthop Sports Phys Ther. 2015;45(10):799807. PubMed ID: 26304640 doi:10.2519/jospt.2015.5011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Herzog W, Longino D, Clark A. The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg. 2003;388(5):305315. PubMed ID: 14504930 doi:10.1007/s00423-003-0402-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Gardinier ES, Manal K, Buchanan TS, Snyder-Mackler L. Altered loading in the injured knee after ACL rupture. J Orthop Res. 2013;31(3):458464. PubMed ID: 23097309 doi:10.1002/jor.22249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Trepczynski A, Kutzner I, Schwachmeyer V, Heller MO, Pfitzner T, Duda GN. Impact of antagonistic muscle co-contraction on in vivo knee contact forces. J Neuroeng Rehabil. 2018;15(1):101. PubMed ID: 30409163 doi:10.1186/s12984-018-0434-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Roos EM, Herzog W, Block JA, Bennell KL. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis. Nat Rev Rheumatol. 2011;7(1):5763. PubMed ID: 21119605 doi:10.1038/nrrheum.2010.195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Andriacchi TP, Mündermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng. 2004;32(3):447457. PubMed ID: 15095819 doi:10.1023/B:ABME.0000017541.82498.37

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Sasaki K, Neptune RR. Individual muscle contributions to the axial knee joint contact force during normal walking. J Biomech. 2010;43(14):27802784. PubMed ID: 20655046 doi:10.1016/j.jbiomech.2010.06.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Taber LA. Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev. 1995;48(8):487545. doi:10.1115/1.3005109

  • 89.

    Crossley KM, Stefanik JJ, Selfe J, et al. 2016 Patellofemoral pain consensus statement from the 4th International Patellofemoral Pain Research Retreat, Manchester. Part 1: terminology, definitions, clinical examination, natural history, patellofemoral osteoarthritis and patient-reported outcome measures. Br J Sports Med. 2016;50(14):839. PubMed ID: 27343241 doi:10.1136/bjsports-2016-096384

    • Search Google Scholar
    • Export Citation
  • 90.

    Pfeiffer SJ, Spang J, Nissman D, et al. Gait Mechanics and T1ρ MRI of tibiofemoral cartilage 6 months after ACL reconstruction. Med Sci Sports Exerc. 2019;51(4):630639. PubMed ID: 30444797 doi:10.1249/MSS.0000000000001834

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Teng H-L, Wu D, Su F, et al. Gait characteristics associated with a greater increase in medial knee cartilage T1ρ and T2 relaxation times in patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med. 2017;45(14):32623271. PubMed ID: 28898105 doi:10.1177/0363546517723007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Kumar D, Su F, Wu D, et al. Frontal plane knee mechanics and early cartilage degeneration in people with anterior cruciate ligament reconstruction: a longitudinal study. Am J Sports Med. 2017;46(2):378387. PubMed ID: 29125920 doi:10.1177/0363546517739605

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    White MS, Brancati RJ, Lepley LK. Relationship between altered knee kinematics and subchondral bone remodeling in a clinically translational model of ACL injury [published online ahead of print December 9, 2020]. J Orthop Res. doi:10.1002/jor.24943

    • Search Google Scholar
    • Export Citation
  • 94.

    Liukkonen MK, Mononen ME, Vartiainen P, et al. Evaluation of the effect of bariatric surgery-induced weight loss on knee gait and cartilage degeneration. J Biomech Eng. 2018;140(4). doi:10.1115/1.4038330

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Vangeneugden J, Verlaan L, Oomen P, et al. Signatures of knee osteoarthritis in women in the temporal and fractal dynamics of human gait. Clin Biomech. 2020;76:105016. doi:10.1016/j.clinbiomech.2020.105016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Henriksen M, Hunter DJ, Dam EB, et al. Is increased joint loading detrimental to obese patients with knee osteoarthritis? A secondary data analysis from a randomized trial. Osteoarthritis Cartilage. 2013;21(12):18651875. PubMed ID: 24135273 doi:10.1016/j.joca.2013.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3341 1880 133
Full Text Views 849 793 3
PDF Downloads 752 670 5