Arthrogenic Muscle Inhibition: Best Evidence, Mechanisms, and Theory for Treating the Unseen in Clinical Rehabilitation

in Journal of Sport Rehabilitation

Click name to view affiliation

Grant Norte
Search for other papers by Grant Norte in
Current site
Google Scholar
PubMed
Close
,
Justin Rush
Search for other papers by Justin Rush in
Current site
Google Scholar
PubMed
Close
, and
David Sherman
Search for other papers by David Sherman in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Arthrogenic muscle inhibition (AMI) impedes the recovery of muscle function following joint injury, and in a broader sense, acts as a limiting factor in rehabilitation if left untreated. Despite a call to treat the underlying pathophysiology of muscle dysfunction more than three decades ago, the continued widespread observations of post-traumatic muscular impairments are concerning, and suggest that interventions for AMI are not being successfully integrated into clinical practice. Objectives: To highlight the clinical relevance of AMI, provide updated evidence for the use of clinically accessible therapeutic adjuncts to treat AMI, and discuss the known or theoretical mechanisms for these interventions. Evidence Acquisition: PubMed and Web of Science electronic databases were searched for articles that investigated the effectiveness or efficacy of interventions to treat outcomes relevant to AMI. Evidence Synthesis: 122 articles that investigated an intervention used to treat AMI among individuals with pathology or simulated pathology were retrieved from 1986 to 2021. Additional articles among uninjured individuals were considered when discussing mechanisms of effect. Conclusion: AMI contributes to the characteristic muscular impairments observed in patients recovering from joint injuries. If left unresolved, AMI impedes short-term recovery and threatens patients’ long-term joint health and well-being. Growing evidence supports the use of neuromodulatory strategies to facilitate muscle recovery over the course of rehabilitation. Interventions should be individualized to meet the needs of the patient through shared clinician–patient decision-making. At a minimum, we propose to keep the treatment approach simple by attempting to resolve inflammation, pain, and effusion early following injury.

The authors are with the School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, OH, USA. Norte (grant.norte@utoledo.edu) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135159. doi:10.1123/jsr.9.2.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Deandrade JR, Grant C, Dixon AS. Joint distension and reflex muscle inhibition in the knee. J Bone Joint Surg Am. 1965;47(2):313322. PubMed ID: 14261807 doi:10.2106/00004623-196547020-00008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Spencer JD, Hayes KC, Alexander IJ. Knee joint effusion and quadriceps reflex inhibition in man. Arch Phys Med Rehabil. 1984;65(4):171177. PubMed ID: 6712434

    • Search Google Scholar
    • Export Citation
  • 4.

    Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10(6):329335. PubMed ID: 6897495 doi:10.1177/036354658201000601

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Arvidsson I, Eriksson E, Knutsson E, Arner S. Reduction of pain inhibition on voluntary muscle activation by epidural analgesia. Orthopedics. 1986;9(10):14151419. PubMed ID: 3774641 doi:10.3928/0147-7447-19861001-13

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Young A, Stokes M, Shakespeare DT, Sherman KP. The effect of intra-articular bupivicaine on quadriceps inhibition after meniscectomy. Med Sci Sports Exerc. 1983;15(2):154. doi:10.1249/00005768-198315020-00310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Shakespeare DT, Stokes M, Sherman KP, Young A. Reflex inhibition of the quadriceps after meniscectomy: lack of association with pain. Clin Physiol. 1985;5(2):137144. PubMed ID: 3838924 doi:10.1111/j.1475-097X.1985.tb00589.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Palmieri-Smith RM, Villwock M, Downie B, Hecht G, Zernicke R. Pain and effusion and quadriceps activation and strength. J Athl Train. 2013;48(2):186191. PubMed ID: 23672382 doi:10.4085/1062-6050-48.2.10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Stokes M, Young A. The contribution of reflex inhibition to arthrogenous muscle weakness. Clin Sci. 1984;67(1):714. doi:10.1042/cs0670007

  • 10.

    Morrissey MC. Reflex inhibition of thigh muscles in knee injury. Causes and treatment. Sports Med. 1989;7(4):263276. PubMed ID: 2657965 doi:10.2165/00007256-198907040-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Birchmeier T, Lisee C, Kane K, Brazier B, Triplett A, Kuenze C. Quadriceps muscle size following ACL injury and reconstruction: a systematic review. J Orthop Res. 2020;38(3):598608. PubMed ID: 31608490 doi:10.1002/jor.24489

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Lisee C, Lepley AS, Birchmeier T, O’Hagan K, Kuenze C. Quadriceps strength and volitional activation after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Health. 2019;11(2):163179. PubMed ID: 30638441 doi:10.1177/1941738118822739

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Sherman DA, Rush JL, Glaviano NR, Norte GE. Hamstrings muscle morphology after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Med. 2021;51(8):17331750. PubMed ID: 33638795 doi:10.1007/s40279-021-01431-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Dutaillis B, Maniar N, Opar DA, Hickey JT, Timmins RG. Lower limb muscle size after anterior cruciate ligament injury: a systematic review and meta-analysis. Sports Med. 2021;51(6):12091226. PubMed ID: 33492623 doi:10.1007/s40279-020-01419-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hart JM, Pietrosimone B, Hertel J, Ingersoll CD. Quadriceps activation following knee injuries: a systematic review. J Athl Train. 2010;45(1):8797. PubMed ID: 20064053 doi:10.4085/1062-6050-45.1.87

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Pazzinatto MF, de Oliveira Silva D, Ferreira AS, et al. Patellar tendon reflex and vastus medialis Hoffmann reflex are down regulated and correlated in women with patellofemoral pain. Arch Phys Med Rehabil. 2019;100(3):514519. PubMed ID: 30059658 doi:10.1016/j.apmr.2018.06.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Sedory EJ, McVey ED, Cross KM, Ingersoll CD, Hertel J. Arthrogenic muscle response of the quadriceps and hamstrings with chronic ankle instability. J Athl Train. 2007;42(3):355360. PubMed ID: 18059990

    • Search Google Scholar
    • Export Citation
  • 18.

    Suttmiller AMB, McCann RS. Neural excitability of lower extremity musculature in individuals with and without chronic ankle instability: a systematic review and meta-analysis. J Electromyogr Kinesiol. 2020;53:102436. PubMed ID: 32505988 doi:10.1016/j.jelekin.2020.102436

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hart HF, Ackland DC, Pandy MG, Crossley KM. Quadriceps volumes are reduced in people with patellofemoral joint osteoarthritis. Osteoarthritis Cartilage. 2012;20(8):863868. PubMed ID: 22525223 doi:10.1016/j.joca.2012.04.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Kemnitz J, Wirth W, Eckstein F, Ruhdorfer A, Culvenor AG. Longitudinal change in thigh muscle strength prior to and concurrent with symptomatic and radiographic knee osteoarthritis progression: data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2017;25(10):16331640. PubMed ID: 28698106 doi:10.1016/j.joca.2017.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Oiestad BE, Juhl CB, Eitzen I, Thorlund JB. Knee extensor muscle weakness is a risk factor for development of knee osteoarthritis. A systematic review and meta-analysis. Osteoarthritis Cartilage. 2015;23(2):171177. PubMed ID: 25450853

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6):828839. PubMed ID: 25693627 doi:10.1111/sms.12435

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Palmieri RM, Ingersoll CD, Hoffman MA. The Hoffmann reflex: methodologic considerations and applications for use in sports medicine and athletic training research. J Athl Train. 2004;39(3):268277. PubMed ID: 16558683

    • Search Google Scholar
    • Export Citation
  • 24.

    Rodriguez KM, Palmieri-Smith RM, Krishnan C. How does anterior cruciate ligament reconstruction affect the functioning of the brain and spinal cord? A systematic review with meta-analysis. J Sport Health Sci. 2020;10(2):172181. PubMed ID: 32707098 doi:10.1016/j.jshs.2020.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Tayfur B, Charuphongsa C, Morrissey D, Miller SC. Neuromuscular function of the knee joint following knee injuries: does it ever get back to normal? A systematic review with meta-analyses. Sports Med. 2021;51(2):321338. PubMed ID: 33247378 doi:10.1007/s40279-020-01386-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kent-Braun JA, Le Blanc R. Quantitation of central activation failure during maximal voluntary contractions in humans. Muscle Nerve. 1996;19(7):861869. PubMed ID: 8965840 doi:10.1002/(SICI)1097-4598(199607)19:7%2C861::AID-MUS8%2E3.0.CO;2-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Park J, Hopkins JT. Quadriceps activation normative values and the affect of subcutaneous tissue thickness. J Electromyogr Kinesiol. 2011;21(1):136140. PubMed ID: 20947373 doi:10.1016/j.jelekin.2010.09.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Grigg P, Schaible HG, Schmidt RF. Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. J Neurophysiol. 1986;55(4):635643. PubMed ID: 3701397 doi:10.1152/jn.1986.55.4.635

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Hurley MV. The effects of joint damage on muscle function, proprioception and rehabilitation. Man Ther. 1997;2(1):1117. PubMed ID: 11440520 doi:10.1054/math.1997.0281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Konishi Y, Fukubayashi T, Takeshita D. Possible mechanism of quadriceps femoris weakness in patients with ruptured anterior cruciate ligament. Med Sci Sports Exerc. 2002;34(9):14141418. PubMed ID: 12218732 doi:10.1097/00005768-200209000-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Solomonow M, Baratta R, Zhou BH, et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med. 1987;15(3):207213. PubMed ID: 3618871 doi:10.1177/036354658701500302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Young A. Current issues in arthrogenous inhibition. Ann Rheum Dis. 1993;52(11):829834. PubMed ID: 8250616 doi:10.1136/ard.52.11.829

  • 33.

    Young A, Stokes M, Iles JF. Effects of joint pathology on muscle. Clin Orthop Relat Res. 1987;(219):2127.

  • 34.

    Palmieri RM, Tom JA, Edwards JE, et al. Arthrogenic muscle response induced by an experimental knee joint effusion is mediated by pre- and post-synaptic spinal mechanisms. J Electromyogr Kinesiol. 2004;14(6):631640. PubMed ID: 15491837 doi:10.1016/j.jelekin.2004.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Palmieri-Smith RM, Kreinbrink J, Ashton-Miller JA, Wojtys EM. Quadriceps inhibition induced by an experimental knee joint effusion affects knee joint mechanics during a single-legged drop landing. Am J Sports Med. 2007;35(8):12691275. PubMed ID: 17244901 doi:10.1177/0363546506296417

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Park J, Hopkins JT. Induced anterior knee pain immediately reduces involuntary and voluntary quadriceps activation. Clin J Sport Med. 2013;23(1):1924. PubMed ID: 23103783 doi:10.1097/JSM.0b013e3182717b7b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Park J, Denning WM, Pitt JD, Francom D, Hopkins JT, Seeley MK. Effects of experimental anterior knee pain on muscle activation during landing and jumping performed at various intensities. J Sport Rehabil. 2017;26(1):7893. PubMed ID: 27632828 doi:10.1123/jsr.2015-0119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Hodges PW, Mellor R, Crossley K, Bennell K. Pain induced by injection of hypertonic saline into the infrapatellar fat pad and effect on coordination of the quadriceps muscles. Arthritis Rheum. 2009;61(1):7077. PubMed ID: 19116977 doi:10.1002/art.24089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Konishi Y, Suzuki Y, Hirose N, Fukubayashi T. Effects of lidocaine into knee on QF strength and EMG in patients with ACL lesion. Med Sci Sports Exerc. 2003;35(11):18051808. PubMed ID: 14600541 doi:10.1249/01.MSS.0000093753.55866.2F

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Hart JM, Bessette M, Choi L, Hogan MV, Diduch D. Sensory response following knee joint damage in rabbits. BMC Musculoskelet Disord. 2014;15(1):139. PubMed ID: 24766654 doi:10.1186/1471-2474-15-139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Norte GE, Goetschius JW, Slater LV, Hart JM. Influence of patient demographics and surgical characteristics on pass rates of return-to-activity tests in anterior cruciate ligament-reconstructed patients before physician clearance [published online ahead of print February 17, 2020]. Clin J Sport Med. doi:10.1097/JSM.0000000000000790

    • Search Google Scholar
    • Export Citation
  • 42.

    Tengman E, Brax Olofsson L, Stensdotter AK, Nilsson KG, Hager CK. Anterior cruciate ligament injury after more than 20 years. II. Concentric and eccentric knee muscle strength. Scand J Med Sci Sports. 2014;24(6):e501509. PubMed ID: 24684507 doi:10.1111/sms.12215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hertel J, Corbett RO. An updated model of chronic ankle instability. J Athl Train. 2019;54(6):572588. PubMed ID: 31162943 doi:10.4085/1062-6050-344-18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Rush JL, Glaviano NR, Norte GE. Assessment of quadriceps corticomotor and spinal-reflexive excitability in individuals with a history of anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Med. 2021;51(5):961990. PubMed ID: 33400217 doi:10.1007/s40279-020-01403-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Groppa S, Oliviero A, Eisen A, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2012;123(5):858882. PubMed ID: 22349304 doi:10.1016/j.clinph.2012.01.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Baumeister J, Reinecke K, Schubert M, Weiss M. Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res. 2011;29(9):13831389. PubMed ID: 21437965 doi:10.1002/jor.21380

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Baumeister J, Reinecke K, Weiss M. Changed cortical activity after anterior cruciate ligament reconstruction in a joint position paradigm: an EEG study. Scand J Med Sci Sports. 2008;18(4):473484. PubMed ID: 18067525 doi:10.1111/j.1600-0838.2007.00702.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Lepley AS, Grooms DR, Burland JP, Davi SM, Kinsella-Shaw JM, Lepley LK. Quadriceps muscle function following anterior cruciate ligament reconstruction: systemic differences in neural and morphological characteristics. Exp Brain Res. 2019;237(5):12671278. PubMed ID: 30852644 doi:10.1007/s00221-019-05499-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Grooms DR, Kiefer AW, Riley MA, et al. Brain-behavior mechanisms for the transfer of neuromuscular training adaptions to simulated sport: initial findings from the train the brain project. J Sport Rehabil. 2018;27(5):15. doi:10.1123/jsr.2017-0241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Hart JM, Kuenze CM, Diduch DR, Ingersoll CD. Quadriceps muscle function after rehabilitation with cryotherapy in patients with anterior cruciate ligament reconstruction. J Athl Train. 2014;49(6):733739. PubMed ID: 25299442 doi:10.4085/1062-6050-49.3.39

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Ewell M, Griffin C, Hull J. The use of focal knee joint cryotherapy to improve functional outcomes after total knee arthroplasiy: review article. PM & R. 2014;6(8):729738. PubMed ID: 24534102 doi:10.1016/j.pmrj.2014.02.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Pietrosimone BG, Hertel J, Ingersoll CD, Hart JM, Saliba SA. Voluntary quadriceps activation deficits in patients with tibiofemoral osteoarthritis: a meta-analysis. PM & R. 2011;3(2):153162. PubMed ID: 21333954 doi:10.1016/j.pmrj.2010.07.485

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Kim KM, Ingersoll CD, Hertel J. Facilitation of Hoffmann reflexes of ankle muscles in prone but not standing positions by focal ankle-joint cooling. J Sport Rehabil. 2015;24(2):130139. PubMed ID: 25365661 doi:10.1123/jsr.2013-0123

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Hopkins JT, Ingersoll CD, Edwards J, Klootwyk TE. Cryotherapy and transcutaneous electric neuromuscular stimulation decrease arthrogenic muscle inhibition of the vastus medialis after knee joint effusion. J Athl Train. 2002;37(1):2531. PubMed ID: 12937440

    • Search Google Scholar
    • Export Citation
  • 55.

    Hopkins JT. Knee joint effusion and cryotherapy alter lower chain kinetics and muscle activity. J Athl Train. 2006;41(2):177184. PubMed ID: 16791303

    • Search Google Scholar
    • Export Citation
  • 56.

    Rice D, McNair PJ, Dalbeth N. Effects of cryotherapy on arthrogenic muscle inhibition using an experimental model of knee swelling. Arthritis Rheum. 2009;61(1):7883. PubMed ID: 19116960 doi:10.1002/art.24168

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Raynor MC, Pietrobon R, Guller U, Higgins LD. Cryotherapy after ACL reconstruction: a meta-analysis. J Knee Surg. 2005;18(2):123129. PubMed ID: 15915833 doi:10.1055/s-0030-1248169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Hopkins JT, Stencil R. Ankle cryotherapy facilitates soleus function. J Orthop Sports Phys Ther. 2002;32(12):622627. PubMed ID: 12492271 doi:10.2519/jospt.2002.32.12.622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Harkey MS, Gribble PA, Pietrosimone BG. Disinhibitory interventions and voluntary quadriceps activation: a systematic review. J Athl Train. 2014;49(3):411421. PubMed ID: 24490843 doi:10.4085/1062-6050-49.1.04

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Arvidsson I, Eriksson E. Postoperative TENS pain relief after knee surgery: objective evaluation. Orthopedics. 1986;9(10):13461351. PubMed ID: 3490659 doi:10.3928/0147-7447-19861001-06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Konishi Y, McNair PJ, Rice DA. TENS alleviates muscle weakness attributable to attenuation of ia afferents. Int J Sports Med. 2017;38(3):253257. PubMed ID: 28192829 doi:10.1055/s-0042-118183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Son SJ, Kim H, Seeley MK, Feland JB, Hopkins JT. Effects of transcutaneous electrical nerve stimulation on quadriceps function in individuals with experimental knee pain. Scand J Med Sci Sports. 2016;26(9):10801090. PubMed ID: 26346597 doi:10.1111/sms.12539

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Hart JM, Kuenze CM, Pietrosimone BG, Ingersoll CD. Quadriceps function in anterior cruciate ligament-deficient knees exercising with transcutaneous electrical nerve stimulation and cryotherapy: a randomized controlled study. Clin Rehabil. 2012;26(11):974981. PubMed ID: 22399575 doi:10.1177/0269215512438272

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Pietrosimone BG, Hart JM, Saliba SA, Hertel J, Ingersoll CD. Immediate effects of transcutaneous electrical nerve stimulation and focal knee joint cooling on quadriceps activation. Med Sci Sports Exerc. 2009;41(6):11751181. PubMed ID: 19461552 doi:10.1249/MSS.0b013e3181982557

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Pietrosimone BG, Saliba SA, Hart JM, Hertel J, Kerrigan DC, Ingersoll CD. Effects of transcutaneous electrical nerve stimulation and therapeutic exercise on quadriceps activation in people with tibiofemoral osteoarthritis. J Orthop Sports Phys Ther. 2011;41(1):412. PubMed ID: 21282869 doi:10.2519/jospt.2011.3447

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Pietrosimone B, Luc-Harkey BA, Harkey MS, et al. Using TENS to enhance therapeutic exercise in individuals with knee osteoarthritis. Med Sci Sports Exerc. 2020;52(10):20862095. PubMed ID: 32251254 doi:10.1249/MSS.0000000000002353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Jankowska E. Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol. 1992;38(4):335378. PubMed ID: 1315446 doi:10.1016/0301-0082(92)90024-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Johnson MI. Transcutaneous electrical nerve stimulation (TENS). In eLS. Chichester: John Wiley & Sons, Ltd; 2012. doi:10.1002/9780470015902.a0024044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum. 2010;40(3):250266. PubMed ID: 19954822 doi:10.1016/j.semarthrit.2009.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Iles JF. Evidence for cutaneous and corticospinal modulation of presynaptic inhibition of ia afferents from the human lower limb. J Physiol. 1996;491(1):197207. doi:10.1113/jphysiol.1996.sp021207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Lepley LK, Lepley AS, Onate JA, Grooms DR. Eccentric exercise to enhance neuromuscular control. Sports Health. 2017;9(4):333340. PubMed ID: 28571492 doi:10.1177/1941738117710913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Wilk KE, Reinold MM, Hooks TR. Recent advances in the rehabilitation of isolated and combined anterior cruciate ligament injuries. Orthop Clin North Am. 2003;34(1):107137. PubMed ID: 12735205 doi:10.1016/S0030-5898(02)00064-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Zhou S. Chronic neural adaptations to unilateral exercise: mechanisms of cross education. Exerc Sport Sci Rev. 2000;28(4):177184. PubMed ID: 11064852

    • Search Google Scholar
    • Export Citation
  • 74.

    Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC. Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol. 2006;101(5):15141522. doi:10.1152/japplphysiol.00531.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Hortobagyi T, Lambert NJ, Hill JP. Greater cross education following training with muscle lengthening than shortening. Med Sci Sports Exerc. 1997;29(1):107112. PubMed ID: 9000162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Kidgell DJ, Frazer AK, Daly RM, et al. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience. 2015;300:566575. PubMed ID: 26037804 doi:10.1016/j.neuroscience.2015.05.057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Harput G, Ulusoy B, Yildiz TI, et al. Cross-education improves quadriceps strength recovery after ACL reconstruction: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2019;27(1):6875. PubMed ID: 29959448 doi:10.1007/s00167-018-5040-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Papandreou M, Billis E, Papathanasiou G, Spyropoulos P, Papaioannou N. Cross-exercise on quadriceps deficit after ACL reconstruction. J Knee Surg. 2013;26(1):5158. PubMed ID: 23288773

    • Search Google Scholar
    • Export Citation
  • 79.

    Lepley LK, Grooms DR, Burland JP, et al. Eccentric cross-exercise after anterior cruciate ligament reconstruction: novel case series to enhance neuroplasticity. Phys Ther Sport. 2018;34:5565. PubMed ID: 30223234 doi:10.1016/j.ptsp.2018.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Hellebrandt FA. Cross education; ipsilateral and contralateral effects of unimanual training. J Appl Physiol. 1951;4(2):136144. PubMed ID: 14888623 doi:10.1152/jappl.1951.4.2.136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Kristeva R, Cheyne D, Deecke L. Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroencephalogr Clin Neurophysiol. 1991;81(4):284298. PubMed ID: 1714823 doi:10.1016/0168-5597(91)90015-P

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Warner B, Kim KM, Hart JM, Saliba S. Lack of effect of superficial heat to the knee on quadriceps function in individuals with quadriceps inhibition. J Sport Rehabil. 2013;22(2):9399. PubMed ID: 23644396 doi:10.1123/jsr.22.2.93

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Norte GE, Saliba SA, Hart JM. Immediate effects of therapeutic ultrasound on quadriceps spinal reflex excitability in patients with knee injury. Arch Phys Med Rehabil. 2015;96(9):15911598. PubMed ID: 25839089 doi:10.1016/j.apmr.2015.03.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Halata Z, Haus J. The ultrastructure of sensory nerve endings in human anterior cruciate ligament. Anat Embryol. 1989;179(5):415421. doi:10.1007/BF00319583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Hogervorst T, Brand RA. Mechanoreceptors in joint function. J Bone Joint Surg Am. 1998;80(9):13651378. PubMed ID: 9759824 doi:10.2106/00004623-199809000-00018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Schaible HG, Schmidt RF. Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. J Neurophysiol. 1983;49(1):3544. PubMed ID: 6827302 doi:10.1152/jn.1983.49.1.35

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Baxendale RH, Ferrell WR, Wood L. The effect of mechanical stimulation of knee joint afferents on quadriceps motor unit activity in the decerebrate cat. Brain Res. 1987;415(2):353356. PubMed ID: 3607503 doi:10.1016/0006-8993(87)90219-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Denegar CR Saliba E, Saliba S, Eds. Therapeutic Modalities for Musculoskeletal Injuries. 4th ed. Champaign, IL: Human Kinetics; 2000.

  • 89.

    Conley CEW, Mattacola CG, Jochimsen KN, Dressler EV, Lattermann C, Howard JS. A comparison of neuromuscular electrical stimulation parameters for postoperative quadriceps strength in patients after knee surgery: a systematic review. Sports Health. 2021;13(2):116127. PubMed ID: 33428557 doi:10.1177/1941738120964817

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Weiss A, Glaviano NR, Resch J, Saliba S. Reliability of a novel approach for quadriceps motor point assessment. Muscle Nerve. 2018;57(1):E1E7. PubMed ID: 28632896 doi:10.1002/mus.25728

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Bax L, Staes F, Verhagen A. Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med. 2005;35(3):191212. PubMed ID: 15730336 doi:10.2165/00007256-200535030-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Lepley LK, Wojtys EM, Palmieri-Smith RM. Combination of eccentric exercise and neuromuscular electrical stimulation to improve quadriceps function post-ACL reconstruction. Knee. 2015;22(3):270277. PubMed ID: 25819154 doi:10.1016/j.knee.2014.11.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Monaghan B, Caulfield B, O’Mathuna DP. Surface neuromuscular electrical stimulation for quadriceps strengthening pre and post total knee replacement. Cochrane Database Syst Rev. 2010(1):CD007177.

    • Search Google Scholar
    • Export Citation
  • 94.

    Giggins O, Fullen B, Coughlan G. Neuromuscular electrical stimulation in the treatment of knee osteoarthritis: a systematic review and meta-analysis. Clin Rehabil. 2012;26(10):867881. PubMed ID: 22324059 doi:10.1177/0269215511431902

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Borzuola R, Labanca L, Macaluso A, Laudani L. Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction. Eur J Appl Physiol. 2020;120(9):21052113. PubMed ID: 32676751 doi:10.1007/s00421-020-04430-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Petterson S, Snyder-Mackler L. The use of neuromuscular electrical stimulation to improve activation deficits in a patient with chronic quadriceps strength impairments following total knee arthroplasty. J Orthop Sports Phys Ther. 2006;36(9):678685. PubMed ID: 17017273 doi:10.2519/jospt.2006.2305

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW. Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. A prospective, randomized clinical trial of electrical stimulation. J Bone Joint Surg Am. 1995;77(8):11661173. PubMed ID: 7642660 doi:10.2106/00004623-199508000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Snyder-Mackler L, Ladin Z, Schepsis AA, Young JC. Electrical stimulation of the thigh muscles after reconstruction of the anterior cruciate ligament. Effects of electrically elicited contraction of the quadriceps femoris and hamstring muscles on gait and on strength of the thigh muscles. J Bone Joint Surg Am. 1991;73(7):10251036. PubMed ID: 1874764 doi:10.2106/00004623-199173070-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Fitzgerald GK, Piva SR, Irrgang JJ. A modified neuromuscular electrical stimulation protocol for quadriceps strength training following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2003;33(9):492501. PubMed ID: 14524508 doi:10.2519/jospt.2003.33.9.492

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    Khaslavskaia S, Sinkjaer T. Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive. Exp Brain Res. 2005;162(4):497502. PubMed ID: 15702321 doi:10.1007/s00221-004-2153-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Barsi GI, Popovic DB, Tarkka IM, Sinkjaer T, Grey MJ. Cortical excitability changes following grasping exercise augmented with electrical stimulation. Exp Brain Res. 2008;191(1):5766. PubMed ID: 18663439 doi:10.1007/s00221-008-1495-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102.

    Bobes Álvarez C, Issa-Khozouz Santamaría P, Fernández-Matías R, et al. Comparison of blood flow restriction training versus non-occlusive training in patients with anterior cruciate ligament reconstruction or knee osteoarthritis: a systematic review. J Clin Med. 2020;10(1):68. doi:10.3390/jcm10010068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Charles D, White R, Reyes C, Palmer D. A systematic review of the effects of blood flow restriction training on quadriceps muscle atrophy and circumference post ACL reconstruction. Int J Sports Phys Ther. 2020;15(6):882891. PubMed ID: 33344004 doi:10.26603/ijspt20200882

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Lu Y, Patel BH, Kym C, et al. Perioperative blood flow restriction rehabilitation in patients undergoing ACL reconstruction: a systematic review. Orthop J Sports Med. 2020;8(3):2325967120906822. PubMed ID: 32232065 doi:10.1177/2325967120906822

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):20352039. PubMed ID: 11128848 doi:10.1097/00005768-200012000-00011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Ohta H, Kurosawa H, Ikeda H, Iwase Y, Satou N, Nakamura S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand. 2003;74(1):6268. PubMed ID: 12635796 doi:10.1080/00016470310013680

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107.

    Lambert B, Hedt CA, Jack RA, et al. Blood flow restriction therapy preserves whole limb bone and muscle following ACL reconstruction. Orthop J Sports Med. 2019;7(3, suppl 2):2325967119S2325900196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    Ferraz RB, Gualano B, Rodrigues R, et al. Benefits of resistance training with blood flow restriction in knee osteoarthritis. Med Sci Sports Exerc. 2018;50(5):897905. PubMed ID: 29266093 doi:10.1249/MSS.0000000000001530

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109.

    Hughes L, Rosenblatt B, Haddad F, et al. Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK National Health Service randomised controlled trial. Sports Med. 2019;49(11):17871805. PubMed ID: 31301034 doi:10.1007/s40279-019-01137-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Curran MT, Bedi A, Mendias CL, Wojtys EM, Kujawa MV, Palmieri-Smith RM. Blood flow restriction training applied with high-intensity exercise does not improve quadriceps muscle function after anterior cruciate ligament reconstruction: a randomized controlled trial. Am J Sports Med. 2020;48(4):825837. PubMed ID: 32167837 doi:10.1177/0363546520904008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111.

    Segal NA, Williams GN, Davis MC, Wallace RB, Mikesky AE. Efficacy of blood flow–restricted, low-load resistance training in women with risk factors for symptomatic knee osteoarthritis. PM & R. 2015;7(4):376384. PubMed ID: 25289840 doi:10.1016/j.pmrj.2014.09.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Segal N, Davis MD, Mikesky AE. Efficacy of blood flow-restricted low-load resistance training for quadriceps strengthening in men at risk of symptomatic knee osteoarthritis. Geriatr Orthop Surg Rehabil. 2015;6(3):160167. PubMed ID: 26328230 doi:10.1177/2151458515583088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    Harper SA, Roberts LM, Layne AS, et al. Blood-flow restriction resistance exercise for older adults with knee osteoarthritis: a pilot randomized clinical trial. J Clin Med. 2019;8(2):265. doi:10.3390/jcm8020265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114.

    Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015;45(2):187200. PubMed ID: 25249278 doi:10.1007/s40279-014-0264-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    Gabler C, Kitzman PH, Mattacola CG. Targeting quadriceps inhibition with electromyographic biofeedback: a neuroplastic approach. Crit Rev Biomed Eng. 2013;41(2):125135. PubMed ID: 24580566 doi:10.1615/CritRevBiomedEng.2013008373

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116.

    Pietrosimone B, McLeod MM, Florea D, Gribble PA, Tevald MA. Immediate increases in quadriceps corticomotor excitability during an electromyography biofeedback intervention. J Electromyogr Kinesiol. 2015;25(2):316322. PubMed ID: 25561075 doi:10.1016/j.jelekin.2014.11.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 117.

    Krebs DE. Clinical electromyographic feedback following meniscectomy: a multiple regression experimental analysis. Phys Ther. 1981;61(7):10171021. PubMed ID: 6894644 doi:10.1093/ptj/61.7.1017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118.

    Draper V, Ballard L. Electrical stimulation versus electromyographic biofeedback in the recovery of quadriceps femoris muscle function following anterior cruciate ligament surgery. Phys Ther. 1991;71(6):455461. PubMed ID: 2034708 doi:10.1093/ptj/71.6.455

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 119.

    Maitland ME, Ajemian SV, Suter E. Quadriceps femoris and hamstring muscle function in a person with an unstable knee. Phys Ther. 1999;79(1):6675. PubMed ID: 9920192 doi:10.1093/ptj/79.1.66

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Akkaya N, Ardic F, Ozgen M, Akkaya S, Sahin F, Kilic A. Efficacy of electromyographic biofeedback and electrical stimulation following arthroscopic partial meniscectomy: a randomized controlled trial. Clin Rehabil. 2012;26(3):224236. PubMed ID: 21971752 doi:10.1177/0269215511419382

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121.

    Choi YL, Kim BK, Hwang YP, Moon OK, Choi WS. Effects of isometric exercise using biofeedback on maximum voluntary isometric contraction, pain, and muscle thickness in patients with knee osteoarthritis. J Phys Ther Sci. 2015;27(1):149153. PubMed ID: 25642061 doi:10.1589/jpts.27.149

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 122.

    Lepley AS, Gribble PA, Pietrosimone BG. Effects of electromyographic biofeedback on quadriceps strength: a systematic review. J Strength Cond Res. 2012;26(3):873882. PubMed ID: 22289696 doi:10.1519/JSC.0b013e318225ff75

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 123.

    Bodkin SG, Bruce AS, Hertel J, et al. Visuomotor therapy modulates corticospinal excitability in patients following anterior cruciate ligament reconstruction: a randomized crossover trial. Clin Biomech. 2021;81:105238. doi:10.1016/j.clinbiomech.2020.105238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 124.

    Place N, Duclay J, Lepers R, Martin A. Unchanged H-reflex during a sustained isometric submaximal plantar flexion performed with an EMG biofeedback. J Electromyogr Kinesiol. 2009;19(6):e395e402. PubMed ID: 19216091 doi:10.1016/j.jelekin.2009.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 125.

    Gerber JP, Marcus RL, Dibble LE, Greis PE, Burks RT, Lastayo PC. Safety, feasibility, and efficacy of negative work exercise via eccentric muscle activity following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2007;37(1):1018. PubMed ID: 17286094 doi:10.2519/jospt.2007.2362

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 126.

    Gokeler A, Bisschop M, Benjaminse A, Myer GD, Eppinga P, Otten E. Quadriceps function following ACL reconstruction and rehabilitation: implications for optimisation of current practices. Knee Surg Sports Traumatol Arthrosc. 2014;22(5):11631174. PubMed ID: 23812438 doi:10.1007/s00167-013-2577-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 127.

    Gerber JP, Marcus RL, Dibble LE, Greis PE, Burks RT, LaStayo PC. Effects of early progressive eccentric exercise on muscle size and function after anterior cruciate ligament reconstruction: a 1-year follow-up study of a randomized clinical trial. Phys Ther. 2009;89(1):5159. PubMed ID: 18988664 doi:10.2522/ptj.20070189

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 128.

    Lepley LK, Wojtys EM, Palmieri-Smith RM. Combination of eccentric exercise and neuromuscular electrical stimulation to improve biomechanical limb symmetry after anterior cruciate ligament reconstruction. Clin Biomech. 2015;30(7):738747. doi:10.1016/j.clinbiomech.2015.04.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129.

    Butterfield TA. Eccentric exercise in vivo: strain-induced muscle damage and adaptation in a stable system. Exerc Sport Sci Rev. 2010;38(2):5160. PubMed ID: 20335736 doi:10.1097/JES.0b013e3181d496eb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 130.

    Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjaer-Kristensen J, Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol. 2000;89(6):22492257. doi:10.1152/jappl.2000.89.6.2249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 131.

    Brockett CL, Morgan DL, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc. 2001;33(5):783790. PubMed ID: 11323549 doi:10.1097/00005768-200105000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 132.

    Dewig DR, Goodwin JS, Pietrosimone BG, Blackburn JT. Associations among eccentric hamstrings strength, hamstrings stiffness, and jump-landing biomechanics. J Athl Train. 2020;55(7):717723. PubMed ID: 32432902 doi:10.4085/1062-6050-151-19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 133.

    Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36(2):133149. PubMed ID: 16464122 doi:10.2165/00007256-200636020-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 134.

    Blackburn T, Padua DA, Pietrosimone B, et al. Vibration improves gait biomechanics linked to posttraumatic knee osteoarthritis following anterior cruciate ligament injury. J Orthop Res. 2020;39(5):11131122. PubMed ID: 32757272 doi:10.1002/jor.24821

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 135.

    Brunetti O, Filippi GM, Lorenzini M, et al. Improvement of posture stability by vibratory stimulation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14(11):11801187. PubMed ID: 16763853 doi:10.1007/s00167-006-0101-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136.

    Fu CL, Yung SH, Law KY, et al. The effect of early whole-body vibration therapy on neuromuscular control after anterior cruciate ligament reconstruction: a randomized controlled trial. Am J Sports Med. 2013;41(4):804814. PubMed ID: 23460328 doi:10.1177/0363546513476473

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 137.

    Pamukoff DN, Pietrosimone B, Ryan ED, Lee DR, Brown LE, Blackburn JT. Whole-body vibration improves early rate of torque development in individuals with ACL reconstruction. J Strength Cond Res. 2016;31(11):29923000. doi:10.1519/JSC.0000000000001740

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Troy Blackburn J, Dewig DR, Johnston CD. Time course of the effects of vibration on quadriceps function in individuals with anterior cruciate ligament reconstruction. J Electromyogr Kinesiol. 2021;56:102508. PubMed ID: 33302006 doi:10.1016/j.jelekin.2020.102508

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139.

    Blackburn JT, Pamukoff DN, Sakr M, Vaughan AJ, Berkoff DJ. Whole body and local muscle vibration reduce artificially induced quadriceps arthrogenic inhibition. Arch Phys Med Rehabil. 2014;95(11):20212028. PubMed ID: 25083559 doi:10.1016/j.apmr.2014.07.393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 140.

    Bokaeian HR, Bakhtiary AH, Mirmohammadkhani M, Moghimi J. The effect of adding whole body vibration training to strengthening training in the treatment of knee osteoarthritis: a randomized clinical trial. J Bodyw Mov Ther. 2016;20(2):334340. PubMed ID: 27210851 doi:10.1016/j.jbmt.2015.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 141.

    Lai Z, Lee S, Hu X, Wang L. Effect of adding whole-body vibration training to squat training on physical function and muscle strength in individuals with knee osteoarthritis. J Musculoskelet Neuronal Interact. 2019;19(3):333341. PubMed ID: 31475941

    • Search Google Scholar
    • Export Citation
  • 142.

    Park YG, Kwon BS, Park JW, et al. Therapeutic effect of whole body vibration on chronic knee osteoarthritis. Ann Rehabil Med. 2013;37(4):505515. PubMed ID: 24020031 doi:10.5535/arm.2013.37.4.505

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 143.

    Segal NA, Glass NA, Shakoor N, Wallace R. Vibration platform training in women at risk for symptomatic knee osteoarthritis. PM & R. 2013;5(3):201209. PubMed ID: 22981005 doi:10.1016/j.pmrj.2012.07.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 144.

    Trans T, Aaboe J, Henriksen M, Christensen R, Bliddal H, Lund H. Effect of whole body vibration exercise on muscle strength and proprioception in females with knee osteoarthritis. Knee. 2009;16(4):256261. PubMed ID: 19147365 doi:10.1016/j.knee.2008.11.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 145.

    Hsiao YH, Chien SH, Tu HP, et al. Early post-operative intervention of whole-body vibration in patients after total knee arthroplasty: a pilot study. J Clin Med. 2019;8(11):1902. doi:10.3390/jcm8111902

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 146.

    Tsuji T, Yoon J, Aiba T, Kanamori A, Okura T, Tanaka K. Effects of whole-body vibration exercise on muscular strength and power, functional mobility and self-reported knee function in middle-aged and older Japanese women with knee pain. Knee. 2014;21(6):10881095. PubMed ID: 25153612 doi:10.1016/j.knee.2014.07.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 147.

    Otzel DM, Hass CJ, Wikstrom EA, Bishop MD, Borsa PA, Tillman MD. Motoneuron function does not change following whole-body vibration in individuals with chronic ankle instability. J Sport Rehabil. 2019;28(6):614622. PubMed ID: 30222478 doi:10.1123/jsr.2017-0364

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 148.

    Pamukoff DN, Pietrosimone B, Lewek MD, et al. Whole-body and local muscle vibration immediately improve quadriceps function in individuals with anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2016;97(7):11211129. PubMed ID: 26869286 doi:10.1016/j.apmr.2016.01.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 149.

    Bills KB, Clarke T, Major GH, et al. Targeted subcutaneous vibration with single-neuron electrophysiology as a novel method for understanding the central effects of peripheral vibrational therapy in a rodent model. Dose Response. 2019;17(1):1559325818825172. PubMed ID: 30728758 doi:10.1177/1559325818825172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 150.

    Eklund G, Hagbarth KE. Motor effects of vibratory muscle stimuli in man. Electroencephalogr Clin Neurophysiol. 1965;19(6):619.

  • 151.

    Eklund G, Hagbarth KE. Normal variability of tonic vibration reflexes in man. Exp Neurol. 1966;16(1):80. PubMed ID: 5923486 doi:10.1016/0014-4886(66)90088-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 152.

    Burke D, Hagbarth KE, Lofstedt L, Wallin BG. Responses of human muscle-spindle endings to vibration of non-contracting muscles. J Physiol-London. 1976;261(3):673693. PubMed ID: 135840 doi:10.1113/jphysiol.1976.sp011580

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 153.

    Pollock RD, Woledge RC, Martin FC, Newham DJ. Effects of whole body vibration on motor unit recruitment and threshold. J Appl Physiol. 2012;112(3):388395. doi:10.1152/japplphysiol.01223.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 154.

    Krause A, Gollhofer A, Freyler K, Jablonka L, Ritzmann R. Acute corticospinal and spinal modulation after whole body vibration. J Musculoskelet Neuronal Interact. 2016;16(4):327338. PubMed ID: 27973385

    • Search Google Scholar
    • Export Citation
  • 155.

    Mileva KN, Bowtell JL, Kossev AR. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Exp Physiol. 2009;94(1):103116. PubMed ID: 18658234 doi:10.1113/expphysiol.2008.042689

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 156.

    Kaut O, Becker B, Schneider C, et al. Stochastic resonance therapy induces increased movement related caudate nucleus activity. J Rehabil Med. 2016;48(9):815818. PubMed ID: 27671247 doi:10.2340/16501977-2143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 157.

    Courtney CA, Lewek MD, Witte PO, Chmell SJ, Hornby TG. Heightened flexor withdrawal responses in subjects with knee osteoarthritis. J Pain. 2009;10(12):12421249. PubMed ID: 19628435 doi:10.1016/j.jpain.2009.05.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 158.

    Ferrell WR, Wood L, Baxendale RH. The effect of acute joint inflammation on flexion reflex excitability in the decerebrate, low-spinal cat. Q J Exp Physiol. 1988;73(1):95102. PubMed ID: 3347700 doi:10.1113/expphysiol.1988.sp003127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 159.

    Leroux A, Belanger M, Boucher JP. Pain effect on monosynaptic and polysynaptic reflex inhibition. Arch Phys Med Rehabil. 1995;76(6):576582. PubMed ID: 7763159 doi:10.1016/S0003-9993(95)80514-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 160.

    Krogsgaard MR, Dyhre-Poulsen P, Fischer-Rasmussen T. Cruciate ligament reflexes. J Electromyogr Kinesiol. 2002;12(3):177182. PubMed ID: 12086811 doi:10.1016/S1050-6411(02)00018-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 161.

    Raunest J, Sager M, Burgener E. Proprioceptive mechanisms in the cruciate ligaments: an electromyographic study on reflex activity in the thigh muscles. J Trauma. 1996;41(3):488493. PubMed ID: 8810968 doi:10.1097/00005373-199609000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 162.

    Sherman DA, Glaviano NR, Norte GE. Hamstrings neuromuscular function after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Med. 2021;51(8):17511769. PubMed ID: 33609272 doi:10.1007/s40279-021-01433-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 163.

    Pamukoff DN, Pietrosimone BG, Ryan ED, Lee DR, Blackburn JT. Quadriceps function and hamstrings co-activation after anterior cruciate ligament reconstruction. J Athl Train. 2017;52(5):422428. PubMed ID: 28388231 doi:10.4085/1062-6050-52.3.05

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 164.

    Konishi Y, Fukubayashi T. Relationship between muscle volume and muscle torque of the hamstrings after anterior cruciate ligament reconstruction. J Sci Med Sport. 2010;13(1):101105. PubMed ID: 18964233 doi:10.1016/j.jsams.2008.08.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 165.

    Lautamies R, Harilainen A, Kettunen J, Sandelin J, Kujala UM. Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc. 2008;16(11):10091016. PubMed ID: 18712355 doi:10.1007/s00167-008-0598-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 166.

    Norte GE, Knaus KR, Kuenze C, et al. MRI-Based assessment of lower-extremity muscle volumes in patients before and after ACL reconstruction. J Sport Rehabil. 2018;27(3):201212. PubMed ID: 28290752 doi:10.1123/jsr.2016-0141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 167.

    Lowe T, Dong XN. The use of hamstring fatigue to reduce quadriceps inhibition after anterior cruciate ligament reconstruction. Percept Mot Skills. 2018;125(1):8192. PubMed ID: 29019442 doi:10.1177/0031512517735744

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 168.

    Yu S, Lowe T, Griffin L, Dong XN. Single bout of vibration-induced hamstrings fatigue reduces quadriceps inhibition and coactivation of knee muscles after anterior cruciate ligament (ACL) reconstruction. J Electromyogr Kinesiol. 2020;55:102464. PubMed ID: 32942109 doi:10.1016/j.jelekin.2020.102464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 169.

    Souron R, Baudry S, Millet GY, Lapole T. Vibration-induced depression in spinal loop excitability revisited. J Physiol. 2019;597(21):51795193. PubMed ID: 31429066 doi:10.1113/JP278469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 170.

    Facchini S, Muellbacher W, Battaglia F, Boroojerdi B, Hallett M. Focal enhancement of motor cortex excitability during motor imagery: a transcranial magnetic stimulation study. Acta Neurol Scand. 2002;105(3):146151. PubMed ID: 11886355 doi:10.1034/j.1600-0404.2002.1o004.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 171.

    Cebolla AM, Petieau M, Cevallos C, Leroy A, Dan B, Cheron G. Long-lasting cortical reorganization as the result of motor imagery of throwing a ball in a virtual tennis court. Front Psychol. 2015;6:1869. PubMed ID: 26648903 doi:10.3389/fpsyg.2015.01869

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 172.

    Oda S, Izumi M, Takaya S, et al. Promising effect of visually-assisted motor imagery against arthrogenic muscle inhibition—A human experimental pain study. J Pain Res. 2021;14:285295. PubMed ID: 33568937 doi:10.2147/JPR.S282736

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 173.

    Grospretre S, Lebon F, Papaxanthis C, Martin A. New evidence of corticospinal network modulation induced by motor imagery. J Neurophysiol. 2016;115(3):12791288. PubMed ID: 26719089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 174.

    Grospretre S, Lebon F, Papaxanthis C, Martin A. Spinal plasticity with motor imagery practice. J Physiol. 2019;597(3):921934. PubMed ID: 30417924

  • 175.

    Barclay-Goddard RE, Stevenson TJ, Poluha W, Thalman L. Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst Rev. 2011;2011(5):Cd005950.

    • Search Google Scholar
    • Export Citation
  • 176.

    Lin IH, Tsai HT, Wang CY, Hsu CY, Liou TH, Lin YN. Effectiveness and superiority of rehabilitative treatments in enhancing motor recovery within 6 months poststroke: a systemic review. Arch Phys Med Rehabil. 2019;100(2):366378. PubMed ID: 30686327 doi:10.1016/j.apmr.2018.09.123

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 177.

    Guerra ZF, Lucchetti ALG, Lucchetti G. Motor imagery training after stroke: a systematic review and meta-analysis of randomized controlled trials. J Neurol Phys Ther. 2017;41(4):205214. PubMed ID: 28922311 doi:10.1097/NPT.0000000000000200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 178.

    Paravlic AH, Maffulli N, Kova? S, Pisot R. Home-based motor imagery intervention improves functional performance following total knee arthroplasty in the short term: a randomized controlled trial. J Orthop Surg Res. 2020;15(1):451. PubMed ID: 33008432 doi:10.1186/s13018-020-01964-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 179.

    Schuster C, Hilfiker R, Amft O, et al. Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines. BMC Med. 2011;9(1):75. PubMed ID: 21682867 doi:10.1186/1741-7015-9-75

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 180.

    Gatti R, Rocca MA, Fumagalli S, et al. The effect of action observation/execution on mirror neuron system recruitment: an fMRI study in healthy individuals. Brain Imaging Behav. 2017;11(2):565576. PubMed ID: 27011016 doi:10.1007/s11682-016-9536-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 181.

    Mendias CL, Lynch EB, Davis ME, et al. Changes in circulating biomarkers of muscle atrophy, inflammation, and cartilage turnover in patients undergoing anterior cruciate ligament reconstruction and rehabilitation. Am J Sports Med. 2013;41(8):18191826. PubMed ID: 23739685 doi:10.1177/0363546513490651

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 182.

    Yang JH, Eun SP, Park DH, Kwak HB, Chang E. The effects of anterior cruciate ligament reconstruction on individual quadriceps muscle thickness and circulating biomarkers. Int J Environ Res Public Health. 2019;16(24):4895. doi:10.3390/ijerph16244895

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 183.

    Wurtzel CN, Gumucio JP, Grekin JA, et al. Pharmacological inhibition of myostatin protects against skeletal muscle atrophy and weakness after anterior cruciate ligament tear. J Orthop Res. 2017;35(11):24992505. PubMed ID: 28176368 doi:10.1002/jor.23537

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 184.

    Wu B, Lorezanza D, Badash I, et al. Perioperative testosterone supplementation increases lean mass in healthy men undergoing anterior cruciate ligament reconstruction: a randomized controlled trial. Orthop J Sports Med. 2017;5(8):2325967117722794. PubMed ID: 28840147 doi:10.1177/2325967117722794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 185.

    Mendias CL, Enselman ERS, Olszewski AM, et al. The use of recombinant human growth hormone to protect against muscle weakness in patients undergoing anterior cruciate ligament reconstruction: a pilot, randomized placebo-controlled trial. Am J Sports Med. 2020;48(8):19161928. PubMed ID: 32452208 doi:10.1177/0363546520920591

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 186.

    Hommel B. Dual-task performance: theoretical analysis and an event-coding account. J Cogn. 2020;3(1):29. PubMed ID: 33043239 doi:10.5334/joc.114

  • 187.

    Hommel B, Chapman CS, Cisek P, Neyedli HF, Song JH, Welsh TN. No one knows what attention is. Atten Percept Psychophys. 2019;81(7):22882303. PubMed ID: 31489566 doi:10.3758/s13414-019-01846-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 188.

    Hommel B, Musseler J, Aschersleben G, Prinz W. The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci. 2001;24(5):849878. PubMed ID: 12239891 doi:10.1017/S0140525X01000103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 189.

    Wulf G, Lewthwaite R. Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon Bull Rev. 2016;23(5):13821414. PubMed ID: 26833314 doi:10.3758/s13423-015-0999-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 190.

    Lohse KR, Jones M, Healy AF, Sherwood DE. The role of attention in motor control. J Exp Psychol Gen. 2014;143(2):930948. PubMed ID: 23647310 doi:10.1037/a0032817

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 191.

    Lohse KR, Sherwood DE, Healy AF. Neuromuscular effects of shifting the focus of attention in a simple force production task. J Mot Behav. 2011;43(2):173184. PubMed ID: 21400331 doi:10.1080/00222895.2011.555436

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 192.

    Marchant DC, Greig M. Attentional focusing instructions influence quadriceps activity characteristics but not force production during isokinetic knee extensions. Hum Mov Sci. 2017;52:6773. PubMed ID: 28142073 doi:10.1016/j.humov.2017.01.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 193.

    Wiseman S, Alizadeh S, Halperin I, et al. Neuromuscular mechanisms underlying changes in force production during an attentional focus task. Brain Sci. 2020;10(1):33. doi:10.3390/brainsci10010033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 194.

    Wulf G, Dufek JS. Increased jump height with an external focus due to enhanced lower extremity joint kinetics. J Mot Behav. 2009;41(5):401409. PubMed ID: 19846388 doi:10.1080/00222890903228421

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 195.

    Marchant DC, Greig M, Scott C. Attentional focusing instructions influence force production and muscular activity during isokinetic elbow flexions. J Strength Cond Res. 2009;23(8):23582366. PubMed ID: 19826287 doi:10.1519/JSC.0b013e3181b8d1e5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 196.

    Raisbeck LD, Diekfuss JA, Grooms DR, Schmitz R. The effects of attentional focus on brain function during a gross motor task. J Sport Rehabil. 2019;29(7):441447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 197.

    Zentgraf K, Lorey B, Bischoff M, Zimmermann K, Stark R, Munzert J. Neural correlates of attentional focusing during finger movements: A fMRI study. J Mot Behav. 2009;41(6):535541. PubMed ID: 19567364 doi:10.3200/35-08-091

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 198.

    Kuhn YA, Keller M, Ruffieux J, Taube W. Adopting an external focus of attention alters intracortical inhibition within the primary motor cortex. Acta Physiol. 2017;220(2):289299. doi:10.1111/apha.12807

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 199.

    Kuhn YA, Keller M, Lauber B, Taube W. Surround inhibition can instantly be modulated by changing the attentional focus. Sci Rep. 2018;8(1):1085. PubMed ID: 29348536 doi:10.1038/s41598-017-19077-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 200.

    Yang C, Luo N, Liang M, et al. Altered brain functional connectivity density in fast-ball sports athletes with early stage of motor training. Front Psychol. 2020;11:530122. PubMed ID: 33101115 doi:10.3389/fpsyg.2020.530122

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 201.

    Luc-Harkey BA, Harkey MS, Pamukoff DN, et al. Greater intracortical inhibition associates with lower quadriceps voluntary activation in individuals with ACL reconstruction. Exp Brain Res. 2017;235(4):11291137. PubMed ID: 28144695 doi:10.1007/s00221-017-4877-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 202.

    Criss CR, Onate JA, Grooms DR. Neural activity for hip-knee control in those with anterior cruciate ligament reconstruction: a task-based functional connectivity analysis. Neurosci Lett. 2020;730:134985. PubMed ID: 32380143 doi:10.1016/j.neulet.2020.134985

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 203.

    Diekfuss JA, Grooms DR, Bonnette S, et al. Real-time biofeedback integrated into neuromuscular training reduces high-risk knee biomechanics and increases functional brain connectivity: a preliminary longitudinal investigation. Psychophysiology. 2020;57(5):e13545. PubMed ID: 32052868 doi:10.1111/psyp.13545

    • Crossref
    • Search Google Scholar
    • Export Citation