Gamma Loop Dysfunction as a Possible Neurophysiological Mechanism of Arthrogenic Muscle Inhibition: A Narrative Review of the Literature

in Journal of Sport Rehabilitation

Click name to view affiliation

Yu Konishi
Search for other papers by Yu Konishi in
Current site
Google Scholar
PubMed
Close
,
Ryo Yoshii
Search for other papers by Ryo Yoshii in
Current site
Google Scholar
PubMed
Close
, and
Christopher D. Ingersoll
Search for other papers by Christopher D. Ingersoll in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Quadriceps activation failure has been observed following various pathological conditions in a knee joint such as knee surgery, pain, effusion in knee, and osteoarthritis also could be aging matter. Those patients are unable to attain maximal quadriceps strength for a long period of time although their quadriceps itself is not damaged. This impairment is termed arthrogenic muscle inhibition (AMI). AMI has been of concern to clinicians because this weakness hinders the rehabilitation process considerably and delays recovery because strengthening protocols for the AMI could be largely ineffective. Clinically, it is important to understand neurophysiological mechanisms of the AMI to treat patients with the impairment. Objectives: This is a narrative review of the literature. The purpose of this review is to understand the following: (1) Why investigations of only peripheral spinal reflexive pathways are not enough for elucidation of the mechanisms of the AMI? (2) What we know about the role of the gamma spindle system in AMI so far? (3) Could a dysfunctional gamma spindle system contribute to AMI lead neural changes in upper central nervous system? and (4) Concerns that a clinician should take into consideration when deciding whether to apply therapeutic interventions for AMI. Data Sources: The databases PubMed, MEDLINE, SPORTDiscus, and CINAHL were searched with the terms arthrogenic muscle inhibition (AMI), reflex inhibition, joint mechanoreceptor, gamma loop, corticospinal pathway, spinal reflex, effusion, and joint injury. The remaining citations were collected from references of similar papers. Conclusions: AMI is a limiting factor in the rehabilitation of joint injury. Motor unit recruitment could be hindered in patients with AMI as a result of a dysfunctional gamma spindle system. Clinicians should understand the mechanism of AMI well in order to establish effective rehabilitation programs for AMI. Indeed, AMI is not caused by a single factor, but rather, multiple neural factors can change over time following the appearance of AMI. Therefore, multiple interventions targeting different neural pathways should be combined to achieve the ideal therapeutic goal for the treatment of AMI.

Konishi is with the Department of Physical Education, National Defense Academy of Japan, Yokosuka, Kanagawa, Japan. Yoshii is with the Department of Rehabilitation, National Hospital Organization Kofu National Hospital, Kofu, Yamanashi, Japan; and the Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Chuo, Yamanashi, Japan. Ingersoll is with the College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA.

Konishi (yu_57@yahoo.co.jp) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Ingersoll CD, Grindstaff TL, Pietrosimone BG, Hart JM. Neuromuscular consequences of anterior cruciate ligament injury. Clin Sports Med. 2008;27(3):383404. PubMed ID: 18503874 doi:10.1016/j.csm.2008.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Lisee C, Lepley AS, Birchmeier T, O’Hagan K, Kuenze C. Quadriceps strength and volitional activation after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Health. 2019;11(2):163179. PubMed ID: 30638441 doi:10.1177/1941738118822739

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hart JM, Pietrosimone B, Hertel J, Ingersoll CD. Quadriceps activation following knee injuries: a systematic review. J Athl Train. 2010;45(1):8797. PubMed ID: 20064053 doi:10.4085/1062-6050-45.1.87

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum. 2009;40(3):250266. PubMed ID: 19954822 doi:10.1016/j.semarthrit.2009.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Rice DA, McNair PJ, Lewis GN, Dalbeth N. Quadriceps arthrogenic muscle inhibition: the effects of experimental knee joint effusion on motor cortex excitability. Arthritis Res Ther. 2014;16(6):1. doi:10.1186/s13075-014-0502-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Rice DA, McNair PJ, Lewis GN. Mechanisms of quadriceps muscle weakness in knee joint osteoarthritis: the effects of prolonged vibration on torque and muscle activation in osteoarthritic and healthy control subjects. Arthritis Res Ther. 2011;13(5):R151. PubMed ID: 21933392 doi:10.1186/ar3467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Steidle-Kloc E, Wirth W, Glass NA, et al. Is pain in one knee associated with isometric muscle strength in the contralateral limb? Data from the osteoarthritis initiative. Am J Phys Med Rehabil. 2015;94(10):792803. PubMed ID: 25768069 doi:10.1097/PHM.0000000000000262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Stevens JE, Mizner RL, Snyder‐Mackler L. Quadriceps strength and volitional activation before and after total knee arthroplasty for osteoarthritis. J Orthop Res. 2003;21(5):775779. PubMed ID: 12919862 doi:10.1016/S0736-0266(03)00052-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Konishi Y, Kasukawa T, Tobita H, Nishino A, Konishi M. Gamma loop dysfunction of the quadriceps femoris of elderly patients hospitalized after fall injury. J Geriatr Phys Ther. 2007;30(2):5459. PubMed ID: 18171488 doi:10.1519/00139143-200708000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Richardson M, Cramer J, Bemben D, Shehab R, Glover J, Bemben M. Effects of age and ACL reconstruction on quadriceps gamma loop function. J Geriatr Phys Ther. 2006;29(1):2632. PubMed ID: 16630374 doi:10.1519/00139143-200604000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135159. doi:10.1123/jsr.9.2.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Meier W, Mizner R, Marcus R, Dibble L, Peters C, Lastayo PC. Total knee arthroplasty: muscle impairments, functional limitations, and recommended rehabilitation approaches. J Orthop Sports Phys Ther. 2008;38(5):246256. PubMed ID: 18448878 doi:10.2519/jospt.2008.2715

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008;27(3):405424. PubMed ID: 18503875 doi:10.1016/j.csm.2008.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hurley M, Jones D, Newham D. Arthrogenic quadriceps inhibition and rehabilitation of patients with extensive traumatic knee injuries. Clin Sci. 1994;86(3):305310. doi:10.1042/cs0860305

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Keays SL, Bullock-Saxton J, Newcombe P, Keays A. The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J Orthop Res. 2003;21(2):231237. PubMed ID: 12568953 doi:10.1016/S0736-0266(02)00160-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Rossi MD, Brown LE, Whitehurst M. Early strength response of the knee extensors during eight weeks of resistive training after unilateral total knee arthroplasty. J Strength Cond Res. 2005;19(4):944949. PubMed ID: 16287362

    • Search Google Scholar
    • Export Citation
  • 17.

    Mirkov DM, Knezevic OM, Maffiuletti NA, Kadija M, Nedeljkovic A, Jaric S. Contralateral limb deficit after ACL-reconstruction: an analysis of early and late phase of rate of force development. J Sports Sci. 2017;35(5):435440. PubMed ID: 27043874 doi:10.1080/02640414.2016.1168933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Urbach D, Nebelung W, Weiler HT, Awiszus F. Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med Sci Sports Exerc. 1999;31(12):16911696. PubMed ID: 10613416 doi:10.1097/00005768-199912000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Stokes M, Young A. The contribution of reflex inhibition to arthrogenous muscle weakness. Clin Sci. 1984;67(1):714. doi:10.1042/cs0670007

  • 20.

    Young A. Current issues in arthrogenous inhibition. Ann Rheum Dis. 1993;52(11):829834. PubMed ID: 8250616 doi:10.1136/ard.52.11.829

  • 21.

    Johansson H, Sjolander P, Sojka P. Receptors in the knee joint ligaments and their role in the biomechanics of the joint. Crit Rev Biomed Eng. 1991;18(5):341368. PubMed ID: 2036801

    • Search Google Scholar
    • Export Citation
  • 22.

    Hogervorst T, Brand RA. Current concepts review-mechanoreceptors in joint function. J Bone Jt Surg. 1998;80(9):13651378. doi:10.2106/00004623-199809000-00018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Berth A, Urbach D, Awiszus F. Improvement of voluntary quadriceps muscle activation after total knee arthroplasty. Arch Phys Med Rehabil. 2002;83(10):14321436. PubMed ID: 12370881 doi:10.1053/apmr.2002.34829

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Urbach D, Awiszus F. Impaired ability of voluntary quadriceps activation bilaterally interferes with function testing after knee injuries. A twitch interpolation study. Int J Sports Med. 2002;23(4):231236. PubMed ID: 12015621 doi:10.1055/s-2002-29074

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hopkins JT, Ingersoll CD, Krause BA, Edwards JE, Cordova ML. Effect of knee joint effusion on quadriceps and soleus motoneuron pool excitability. Med Sci Sports Exerc. 2001;33(1):123126. PubMed ID: 11194097 doi:10.1097/00005768-200101000-00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Urbach D, Nebelung W, Becker R, Awiszus F. Effects of reconstruction of the anterior cruciate ligament on voluntary activation of quadriceps femoris a prospective twitch interpolation study. J Bone Joint Surg Br. 2001;83(8):11041110. PubMed ID: 11764420 doi:10.1302/0301-620X.83B8.0831104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Burke D. The activity of human muscle spindle endings in normal motor behavior. Int Rev Physiol. 1981;25:91126. PubMed ID: 6451598

  • 28.

    Johansson H, Sjolander P, Sojka P. A sensory role for the cruciate ligaments. Clin Orthop Relat Res. 1991;268:161178.

  • 29.

    Johansson H, Sjolander P, Sojka P, Wadell I. Fusimotor reflexes to antagonistic muscles simultaneously assessed by multi-afferent recordings from muscle spindle afferents. Brain Res. 1987;435(1–2):337342. PubMed ID: 3427462 doi:10.1016/0006-8993(87)91620-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Johansson H, Sojka P. Actions on gamma-motoneurones elicited by electrical stimulation of cutaneous afferent fibres in the hind limb of the cat. J Physiol. 1985;366(1):343363. PubMed ID: 4057094 doi:10.1113/jphysiol.1985.sp015802

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Konishi Y, Fukubayashi T, Takeshita D. Possible mechanism of quadriceps femoris weakness in patients with ruptured anterior cruciate ligament. Med Sci Sports Exerc. 2002;34(9):14141418. PubMed ID: 12218732 doi:10.1097/00005768-200209000-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Kouzaki M, Shinohara M, Fukunaga T. Decrease in maximal voluntary contraction by tonic vibration applied to a single synergist muscle in humans. J Appl Physiol. 2000;89(4):14201424. PubMed ID: 11007577 doi:10.1152/jappl.2000.89.4.1420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Roll JP, Vedel JP. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res. 1982;47(2):177190. PubMed ID: 6214420 doi:10.1007/BF00239377

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Roll JP, Vedel JP, Ribot E. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res. 1989;76(1):213222. PubMed ID: 2753103 doi:10.1007/BF00253639

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Konishi Y, Fukubayashi T, Takeshita D. Mechanism of quadriceps femoris muscle weakness in patients with anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2002;12(6):371375. PubMed ID: 12453165 doi:10.1034/j.1600-0838.2002.01293.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Konishi Y, Aihara Y, Sakai M, Ogawa G, Fukubayashi T. Gamma loop dysfunction in the quadriceps femoris of patients who underwent anterior cruciate ligament reconstruction remains bilaterally. Scand J Med Sci Sports. 2007;17(4):393399. PubMed ID: 16805784

    • Search Google Scholar
    • Export Citation
  • 37.

    Konishi Y. Anterior cruciate ligament reconstruction does not induce further gamma loop abnormalities on the intact side of the quadriceps femoris: a longitudinal study. Scand J Med Sci Sports. 2018;28(1):196202. PubMed ID: 28378501 doi:10.1111/sms.12894

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Willmore J, Costill D. Physiology of Sport and Exercise. Champaign, IL: Human kinetics; 1994.

  • 39.

    Avela J, Kyrolainen H, Komi PV. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J Appl Physiol. 1999;86(4):12831291. PubMed ID: 10194214 doi:10.1152/jappl.1999.86.4.1283

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Gandevia SC. Neural control in human muscle fatigue: changes in muscle afferents, motoneurones and motor cortical drive [corrected]. Acta Physiol Scand. 1998;162(3):275283. PubMed ID: 9578373 doi:10.1046/j.1365-201X.1998.0299f.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Bongiovanni LG, Hagbarth KE, Stjernberg L. Prolonged muscle vibration reducing motor output in maximal voluntary contractions in man. J Physiol. 1990;423(1):1526. PubMed ID: 2388149 doi:10.1113/jphysiol.1990.sp018008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Konishi Y, Ikeda K, Nishino A, Sunaga M, Aihara Y, Fukubayashi T. Relationship between quadriceps femoris muscle volume and muscle torque after anterior cruciate ligament repair. Scand J Med Sci Sports. 2007;17(6):656661. PubMed ID: 17331086 doi:10.1111/j.1600-0838.2006.00619.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Konishi Y, Oda T, Tsukazaki S, Kinugasa R, Hirose N, Fukubayashi T. Relationship between quadriceps femoris muscle volume and muscle torque after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc. 2010;19(4):641645. PubMed ID: 21107531 doi:10.1007/s00167-010-1324-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Rush JL, Glaviano NR, Norte GE. Assessment of quadriceps corticomotor and spinal-reflexive excitability in individuals with a history of anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Med. 2021;51(5):961990. PubMed ID: 33400217 doi:10.1007/s40279-020-01403-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Bodkin SG, Norte GE, Hart JM. Corticospinal excitability can discriminate quadriceps strength indicative of knee function after ACL-reconstruction. Scand J Med Sci Sports. 2019;29(5):716724. PubMed ID: 30672626 doi:10.1111/sms.13394

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Scheurer SA. The Relationship Between Corticomotor Excitability and Quadriceps Neuromuscular Function in ACL Reconstructed Patients. University of Toledo and OhioLINK; 2018.

    • Search Google Scholar
    • Export Citation
  • 47.

    Norte GE, Hertel J, Saliba SA, Diduch DR, Hart JM. Quadriceps neuromuscular function in patients with anterior cruciate ligament reconstruction with or without knee osteoarthritis: a cross-sectional study. J Athl Train. 2018;53(5):475485. PubMed ID: 29893603 doi:10.4085/1062-6050-102-17

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Ward SH, Pearce A, Bennell KL, Peitrosimone B, Bryant AL. Quadriceps cortical adaptations in individuals with an anterior cruciate ligament injury. Knee. 2016;23(4):582587. PubMed ID: 27162116 doi:10.1016/j.knee.2016.04.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Lepley A, Gribble P, Thomas A, Tevald M, Sohn D, Pietrosimone B. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6):828839. PubMed ID: 25693627 doi:10.1111/sms.12435

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Bodkin SG, Bruce AS, Hertel J, et al. Visuomotor therapy modulates corticospinal excitability in patients following anterior cruciate ligament reconstruction: a randomized crossover trial. Clin Biomech. 2021;81:105238. doi:10.1016/j.clinbiomech.2020.105238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Hopkins J, Ingersoll CD, Edwards J, Klootwyk TE. Cryotherapy and transcutaneous electric neuromuscular stimulation decrease arthrogenic muscle inhibition of the vastus medialis after knee joint effusion. J Athl Train. 2002;37(1):2531. PubMed ID: 12937440

    • Search Google Scholar
    • Export Citation
  • 52.

    Sonnery-Cottet B, Saithna A, Quelard B, et al. Arthrogenic muscle inhibition after ACL reconstruction: a scoping review of the efficacy of interventions. Br J Sports Med. 2019;53(5):289298. PubMed ID: 30194224 doi:10.1136/bjsports-2017-098401

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Skurvydas A, Masiulis N, Gudas R, et al. Extension and flexion torque variability in ACL deficiency. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):13071313. PubMed ID: 21302043 doi:10.1007/s00167-011-1425-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Perraton L, Clark R, Crossley K, et al. Impaired voluntary quadriceps force control following anterior cruciate ligament reconstruction: relationship with knee function. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):14241431. PubMed ID: 26745965 doi:10.1007/s00167-015-3937-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Rice D, Lewis G, McNair P. Impaired regulation of submaximal force after ACL reconstruction: role of muscle spindles. Int J Sports Med. 2021;42(6):550558. PubMed ID: 33176382

    • Search Google Scholar
    • Export Citation
  • 56.

    Ward SH, Perraton L, Bennell K, Pietrosimone B, Bryant AL. Deficits in quadriceps force control after anterior cruciate ligament injury: potential central mechanisms. J Athl Train. 2019;54(5):505512. PubMed ID: 31009232 doi:10.4085/1062-6050-414-17

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Grooms DR, Chaudhari A, Page SJ, Nichols-Larsen DS, Onate JA. Visual-motor control of drop landing after anterior cruciate ligament reconstruction. J Athl Train. 2018;53(5):486496. PubMed ID: 29749751 doi:10.4085/1062-6050-178-16

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2949 2105 141
Full Text Views 634 604 8
PDF Downloads 679 621 21