Neuromuscular Consequences of Lumbopelvic Dysfunction: Research and Clinical Perspectives

in Journal of Sport Rehabilitation

Click name to view affiliation

Terry L. Grindstaff Physical Therapy Department, School of Pharmacy & Health Professions, Creighton University, Omaha, NE, USA

Search for other papers by Terry L. Grindstaff in
Current site
Google Scholar
PubMed
Close
*
,
L. Colby Mangum Institute of Exercise Physiology and Rehabilitation Science, College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA

Search for other papers by L. Colby Mangum in
Current site
Google Scholar
PubMed
Close
, and
Michael Voight School of Physical Therapy, Belmont University, Nashville, TN, USA

Search for other papers by Michael Voight in
Current site
Google Scholar
PubMed
Close
Restricted access

Injuries involving the lumbopelvic region (ie, lumbar spine, pelvis, hip) are common across the lifespan and include pathologies such as low back pain, femoroacetabular impingement syndrome, labrum tear, and osteoarthritis. Joint injury is known to result in an arthrogenic muscle response which contributes to muscle weakness and altered movement patterns. The purpose of this manuscript is to summarize the arthrogenic muscle response that occurs across lumbopelvic region pathologies, identify methods to quantify muscle function, and propose suggestions for future research. While each lumbopelvic region pathology is unique, there are a few common impairments and a relative consistent arthrogenic muscle response that occurs across the region. Hip muscle weakness and hip joint range of motion limitations occur with both lumbar spine and hip pathologies, and individuals with low back pain are known to demonstrate inhibition of the transversus abdominis and multifidus. Assessment of muscle inhibition is often limited to research laboratory settings, but dynamometers, ultrasound imaging, and electromyography offer clinical capacity to quantify muscle function and inform treatment pathways. Future studies should systematically determine the arthrogenic muscle response across multiple muscle groups and the timeline for changes in muscle function and determine whether disinhibitory modalities improve functional outcomes beyond traditional treatment approaches.

Grindstaff (GrindstaffTL@gmail.com) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135159. doi:10.1123/jsr.9.2.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Palmieri RM, Ingersoll CD, Hoffman MA, et al. Arthrogenic muscle response to a simulated ankle joint effusion. Br J Sports Med. 2004;38(1):2630. PubMed ID: 14751941 doi:10.1136/bjsm.2002.001677

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Janda V. Muscle weakness and inhibition (pseudoparesis) in back pain syndromes. In: Grieve GP, ed. Modern Manual Therapy of the Vertebral Column. 1st ed.  Churchill Livingstone; 1986:197201.

    • Search Google Scholar
    • Export Citation
  • 4.

    Jull GA, Janda V. Muscles and motor control in low back pain: Assessment and management. In: Twomey LT, Taylor JR, eds. Physical Therapy of the Low BackChurchill Livingstone; 1987:253278.

    • Search Google Scholar
    • Export Citation
  • 5.

    Sahrmann SA. Diagnosis and Treatment of Movement Impairment SyndromesMosby, Inc.; 2002.

  • 6.

    Comerford MJ, Mottram SL. Movement and stability dysfunction-contemporary developments. Man Ther. 2001;6(1):1526. PubMed ID: 11243905 doi:10.1054/math.2000.0388

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Richardson C, Hides J, Hodges PW. Therapeutic Exercise for Lumbopelvic Stabilization: A Motor Control Approach for the Treatment and Prevention of Low Back Pain. 2nd ed.  Churchill Livingstone; 2004.

    • Search Google Scholar
    • Export Citation
  • 8.

    Brown-Taylor L, Bordner H, Glaws K, Vasileff WK, Walrod B, Di Stasi S. Prevalence of low back pain and related disability in patients with femoroacetabular impingement syndrome. PM R. 2022;14(1):818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Prather H, Cheng A, Steger-May K, Maheshwari V, Dillen LV. Hip and lumbar spine physical examination findings in people presenting with low back pain, with or without lower extremity pain. J Orthop Sports Phys Ther. 2017;47(3):163172. PubMed ID: 28158964 doi:10.2519/jospt.2017.6567

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hammond CA, Hatfield GL, Gilbart MK, Garland SJ, Hunt MA. Trunk and lower limb biomechanics during stair climbing in people with and without symptomatic femoroacetabular impingement. Clin Biomech. 2017;42:108114. doi:10.1016/j.clinbiomech.2017.01.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Lewis CL, Loverro KL, Khuu A. Kinematic differences during single-leg step-down between individuals with femoroacetabular impingement syndrome and individuals without hip pain. J Orthop Sports Phys Ther. 2018;48(4):270279. PubMed ID: 29510652 doi:10.2519/jospt.2018.7794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Zawadka M, Smołka J, Skublewska-Paszkowska M, et al. Altered squat movement pattern in patients with chronic low back pain. Ann Agric Environ Med. 2021;28(1):158162. PubMed ID: 33775082

    • Search Google Scholar
    • Export Citation
  • 13.

    Hodges PW, Danneels L. Changes in structure and function of the back muscles in low back pain: different time points, observations, and mechanisms. J Orthop Sports Phys Ther. 2019;49(6):464476. PubMed ID: 31151377 doi:10.2519/jospt.2019.8827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hides JA, Donelson R, Lee D, Prather H, Sahrmann SA, Hodges PW. Convergence and divergence of exercise-based approaches that incorporate motor control for the management of low back pain. J Orthop Sports Phys Ther. 2019;49(6):437452. PubMed ID: 31092126 doi:10.2519/jospt.2019.8451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Koch C, Hänsel F. Chronic non-specific low back pain and motor control during gait. Front Psychol. 2018;9:2236. doi:10.3389/fpsyg.2018.02236

  • 16.

    Pourahmadi M, Asadi M, Dommerholt J, Yeganeh A. Changes in the macroscopic morphology of hip muscles in low back pain. J Anat. 2020;236(1):320. PubMed ID: 31475359 doi:10.1111/joa.13086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Kendall KD, Schmidt C, Ferber R. The relationship between hip-abductor strength and the magnitude of pelvic drop in patients with low back pain. J Sport Rehabil. 2010;19(4):422435. PubMed ID: 21116011 doi:10.1123/jsr.19.4.422

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Sadler S, Cassidy S, Peterson B, Spink M, Chuter V. Gluteus medius muscle function in people with and without low back pain: a systematic review. BMC Musculoskelet Disord. 2019;20(1):463. PubMed ID: 31638962 doi:10.1186/s12891-019-2833-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Freke M, Kemp JL, Svege I, Risberg MA, Semciw AI, Crossley KM. Physical impairments in symptomatic femoroacetabular impingement: a systematic review of the evidence. Br J Sports Med. 2016;50(19):1180. PubMed ID: 27301577 doi:10.1136/bjsports-2016-096152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Casartelli NC, Maffiuletti NA, Item-Glatthorn JF, et al. Hip muscle weakness in patients with symptomatic femoroacetabular impingement. Osteoarthritis Cartilage. 2011;19(7):816821. PubMed ID: 21515390 doi:10.1016/j.joca.2011.04.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Nepple JJ, Goljan P, Briggs KK, Garvey SE, Ryan M, Philippon MJ. Hip strength deficits in patients with symptomatic femoroacetabular impingement and labral tears. Arthroscopy. 2015;31(11):21062111. PubMed ID: 26105092 doi:10.1016/j.arthro.2015.04.095

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Frasson VB, Vaz MA, Morales AB, et al. Hip muscle weakness and reduced joint range of motion in patients with femoroacetabular impingement syndrome: a case-control study. Braz J Phys Ther. 2020;24(1):3945. PubMed ID: 30509854 doi:10.1016/j.bjpt.2018.11.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Roach SM, San Juan JG, Suprak DN, Lyda M, Bies AJ, Boydston CR. Passive hip range of motion is reduced in active subjects with chronic low back pain compared to controls. Int J Sports Phys Ther. 2015;10(1):1320. PubMed ID: 25709858

    • Search Google Scholar
    • Export Citation
  • 24.

    Jiménez-Del-Barrio S, Mingo-Gómez MT, Estébanez-de-Miguel E, Saiz-Cantero E, Del-Salvador-Miguélez AI, Ceballos-Laita L. Adaptations in pelvis, hip and knee kinematics during gait and muscle extensibility in low back pain patients: a cross-sectional study. J Back Musculoskelet Rehabil. 2020;33(1):4956. PubMed ID: 31403939 doi:10.3233/BMR-191528

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Malloy P, Neumann DA, Kipp K. Hip biomechanics during a single-leg squat: 5 key differences between people with femoroacetabular impingement syndrome and those without hip pain. J Orthop Sports Phys Ther. 2019;49(12):908916. PubMed ID: 31337265 doi:10.2519/jospt.2019.8356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Bagwell JJ, Snibbe J, Gerhardt M, Powers CM. Hip kinematics and kinetics in persons with and without cam femoroacetabular impingement during a deep squat task. Clin Biomech. 2016;31:8792. doi:10.1016/j.clinbiomech.2015.09.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Dwyer MK, Lewis CL, Hanmer AW, McCarthy JC. Do neuromuscular alterations exist for patients with acetabular labral tears during function? Arthroscopy. 2016;32(6):10451052. PubMed ID: 27129378 doi:10.1016/j.arthro.2016.03.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Burns SA, Cleland JA, Rivett DA, Snodgrass SJ. Examination procedures and interventions for the hip in the management of low back pain: a survey of physical therapists. Braz J Phys Ther. 2019;23(5):419427. PubMed ID: 30293955 doi:10.1016/j.bjpt.2018.09.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Bade M, Cobo-Estevez M, Neeley D, Pandya J, Gunderson T, Cook C. Effects of manual therapy and exercise targeting the hips in patients with low-back pain-a randomized controlled trial. J Eval Clin Pract. 2017;23(4):734740. PubMed ID: 28127827 doi:10.1111/jep.12705

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Khoury AN, Hatem M, Bowler J, Martin HD. Hip-spine syndrome: rationale for ischiofemoral impingement, femoroacetabular impingement and abnormal femoral torsion leading to low back pain. J Hip Preserv Surg. 2020;7(3):390400. PubMed ID: 33948195 doi:10.1093/jhps/hnaa054

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Sun Y, Thompson KA, Darden C, Youm T. Surgical intervention for femoroacetabular impingement can lead to improvements in both hip and back function in patients with coexisting chronic back pain at 1-year follow-up. Arthroscopy. 2021;37(4):11631169. doi:10.1016/j.arthro.2020.11.043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Voight ML, Robinson K, Gill L, Griffin K. Postoperative rehabilitation guidelines for hip arthroscopy in an active population. Sports Health. 2010;2(3):222230. PubMed ID: 23015942 doi:10.1177/1941738110366383

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Terrell SL, Olson GE, Lynch J. Therapeutic exercise approaches to nonoperative and postoperative management of femoroacetabular impingement syndrome. J Athl Train. 2020;56(1):3145. doi:10.4085/1062-6050-0488.19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Hoit G, Whelan DB, Dwyer T, Ajrawat P, Chahal J. Physiotherapy as an initial treatment option for femoroacetabular impingement: a systematic review of the literature and meta-analysis of 5 randomized controlled trials. Am J Sports Med. 2020;48(8):20422050. PubMed ID: 31774704 doi:10.1177/0363546519882668

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Chang W-J, Buscemi V, Liston MB, McAuley JH, Hodges PW, Schabrun SM. Sensorimotor cortical activity in acute low back pain: a cross-sectional study. J Pain. 2019;20(7):819829. PubMed ID: 30660764 doi:10.1016/j.jpain.2019.01.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Goossens N, Rummens S, Janssens L, Caeyenberghs K, Brumagne S. Association between sensorimotor impairments and functional brain changes in patients with low back pain: a critical review. Am J Phys Med Rehabil. 2018;97(3):200211. PubMed ID: 29112509 doi:10.1097/PHM.0000000000000859

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Strutton PH, Theodorou S, Catley M, McGregor AH, Davey NJ. Corticospinal excitability in patients with chronic low back pain. J Spinal Disord Tech. 2005;18(5):420424. PubMed ID: 16189454 doi:10.1097/01.bsd.0000169063.84628.fe

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Tsao H, Danneels LA, Hodges PW. ISSLS prize winner: Smudging the motor brain in young adults with recurrent low back pain. Spine. 2011;36(21):17211727. doi:10.1097/BRS.0b013e31821c4267

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Massé-Alarie H, Beaulieu LD, Preuss R, Schneider C. Corticomotor control of lumbar multifidus muscles is impaired in chronic low back pain: concurrent evidence from ultrasound imaging and double-pulse transcranial magnetic stimulation. Exp Brain Res. 2016;234(4):10331045. PubMed ID: 26708518 doi:10.1007/s00221-015-4528-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Hodges PW, Galea MP, Holm S, Holm AK. Corticomotor excitability of back muscles is affected by intervertebral disc lesion in pigs. Eur J Neurosci. 2009;29(7):14901500. doi:10.1111/j.1460-9568.2009.06670.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Indahl A, Kaigle A, Reikerås O, Holm S. Sacroiliac joint involvement in activation of the porcine spinal and gluteal musculature. J Spinal Disord. 1999;12(4):325330. PubMed ID: 10451049 doi:10.1097/00002517-199908000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Indahl A, Kaigle AM, Reikeräs O, Holm SH. Interaction between the porcine lumbar intervertebral disc, zygapophysial joints, and paraspinal muscles. Spine. 1997;22(24):28342840. doi:10.1097/00007632-199712150-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Kang YM, Choi WS, Pickar JG. Electrophysiologic evidence for an intersegmental reflex pathway between lumbar paraspinal tissues. Spine. 2002;27(3):E56E63. doi:10.1097/00007632-200202010-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Solomonow M, Zhou BH, Harris M, Lu Y, Baratta RV. The ligamento-muscular stabilizing system of the spine. Spine. 1998;23(23):25522562. doi:10.1097/00007632-199812010-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Freeman S, Mascia A, McGill S. Arthrogenic neuromusculature inhibition: a foundational investigation of existence in the hip joint. Clin Biomech. 2013;28(2):171177. doi:10.1016/j.clinbiomech.2012.11.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Hodges P, Holm AK, Hansson T, Holm S. Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine. 2006;31(25):29262933. doi:10.1097/01.brs.0000248453.51165.0b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Kiesel KB, Butler RJ, Duckworth A, et al. Experimentally induced pain alters the EMG activity of the lumbar multifidus in asymptomatic subjects. Man Ther. 2012;17(3):236240. PubMed ID: 22342196 doi:10.1016/j.math.2012.01.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Dubois JD, Piché M, Cantin V, Descarreaux M. Effect of experimental low back pain on neuromuscular control of the trunk in healthy volunteers and patients with chronic low back pain. J Electromyogr Kinesiol. 2011;21(5):774781. PubMed ID: 21641235 doi:10.1016/j.jelekin.2011.05.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Kiesel KB, Uhl T, Underwood FB, Nitz AJ. Rehabilitative ultrasound measurement of select trunk muscle activation during induced pain. Man Ther. 2008;13(2):132138. PubMed ID: 17198763 doi:10.1016/j.math.2006.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Spencer JD, Hayes KC, Alexander IJ. Knee joint effusion and quadriceps reflex inhibition in man. Arch Phys Med Rehabil. 1984;65(4):171177. PubMed ID: 6712434

    • Search Google Scholar
    • Export Citation
  • 51.

    Hopkins JT, Ingersoll CD, Krause BA, Edwards JE, Cordova ML. Effect of knee joint effusion on quadriceps and soleus motoneuron pool excitability. Med Sci Sports Exerc. 2001;33(1):123126. PubMed ID: 11194097 doi:10.1097/00005768-200101000-00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Palmieri RM, Tom JA, Edwards JE, et al. Arthrogenic muscle response induced by an experimental knee joint effusion is mediated by pre- and post-synaptic spinal mechanisms. J Electromyogr Kinesiol. 2004;14(6):631640. PubMed ID: 15491837 doi:10.1016/j.jelekin.2004.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Tsao H, Tucker KJ, Hodges PW. Changes in excitability of corticomotor inputs to the trunk muscles during experimentally-induced acute low back pain. Neuroscience. 2011;181:127133. PubMed ID: 21333720 doi:10.1016/j.neuroscience.2011.02.033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    De Pieri E, Friesenbichler B, List R, et al. Subject-specific modeling of femoral torsion influences the prediction of hip loading during gait in asymptomatic adults. Front Bioeng Biotechnol. 2021;9:679360. doi:10.3389/fbioe.2021.679360

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    van der Krogt MM, Delp SL, Schwartz MH. How robust is human gait to muscle weakness? Gait Posture. 2012;36(1):113119. doi:10.1016/j.gaitpost.2012.01.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Toumanidou T, Noailly J. Musculoskeletal modeling of the lumbar spine to explore functional interactions between back muscle loads and intervertebral disk multiphysics. Front Bioeng Biotechnol. 2015;3:111.

    • Search Google Scholar
    • Export Citation
  • 57.

    Ferreira PH, Ferreira ML, Hodges PW. Changes in recruitment of the abdominal muscles in people with low back pain: ultrasound measurement of muscle activity. Spine. 2004;29(22):25602566. PubMed ID: 15543074 doi:10.1097/01.brs.0000144410.89182.f9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Hodges PW. Changes in motor planning of feedforward postural responses of the trunk muscles in low back pain. Exp Brain Res. 2001;141(2):261266. PubMed ID: 11713638 doi:10.1007/s002210100873

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Hodges PW, Richardson CA. Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch Phys Med Rehabil. 1999;80(9):10051012. PubMed ID: 10489000 doi:10.1016/S0003-9993(99)90052-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    O’Sullivan PB, Twomey L, Allison GT. Altered abdominal muscle recruitment in patients with chronic back pain following a specific exercise intervention. J Orthop Sports Phys Ther. 1998;27(2):114124. PubMed ID: 9475135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Wallwork TL, Stanton WR, Freke M, Hides JA. The effect of chronic low back pain on size and contraction of the lumbar multifidus muscle. Man Ther. 2009;14(5):496500. PubMed ID: 19027343 doi:10.1016/j.math.2008.09.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Koppenhaver SL, Fritz JM, Hebert JJ, et al. Association between history and physical examination factors and change in lumbar multifidus muscle thickness after spinal manipulation in patients with low back pain. J Electromyogr Kinesiol. 2012;22(5):724731. PubMed ID: 22516351 doi:10.1016/j.jelekin.2012.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Hides JA, Richardson CA, Jull GA. Multifidus muscle recovery is not automatic after resolution of acute, first-episode low back pain. Spine. 1996;21(23):27632769. PubMed ID: 8979323 doi:10.1097/00007632-199612010-00011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Russo M, Deckers K, Eldabe S, et al. Muscle control and non-specific chronic low back pain. Neuromodulation. 2018;21(1):19. PubMed ID: 29230905 doi:10.1111/ner.12738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Sutherlin MA, Gage M, Mangum LC, et al. Changes in muscle thickness across positions on ultrasound imaging in participants with or without a history of low back pain. J Athl Train. 2018;53(6):553559. PubMed ID: 29912568 doi:10.4085/1062-6050-491-16

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Ehsani F, Arab AM, Jaberzadeh S, Salavati M. Ultrasound measurement of deep and superficial abdominal muscles thickness during standing postural tasks in participants with and without chronic low back pain. Man Ther. 2016;23:98105. PubMed ID: 26842677 doi:10.1016/j.math.2016.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Hides JA, Stokes MJ, Saide M, Jull GA, Cooper DH. Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine. 1994;19(suppl 1):165172. PubMed ID: 8153825 doi:10.1097/00007632-199401001-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Fortin M, Macedo LG. Multifidus and paraspinal muscle group cross-sectional areas of patients with low back pain and control patients: a systematic review with a focus on blinding. Phys Ther. 2013;93(7):873888. PubMed ID: 23504343 doi:10.2522/ptj.20120457

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Hides J, Stanton W, Mendis MD, Sexton M. The relationship of transversus abdominis and lumbar multifidus clinical muscle tests in patients with chronic low back pain. Man Ther. 2011;16(6):573577. PubMed ID: 21641268 doi:10.1016/j.math.2011.05.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Hodges P, Cresswell A, Thorstensson A. Preparatory trunk motion accompanies rapid upper limb movement. Exp Brain Res. 1999;124(1):6979. PubMed ID: 9928791 doi:10.1007/s002210050601

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Hodges PW, Richardson CA. Relationship between limb movement speed and associated contraction of the trunk muscles. Ergonomics. 1997;40(11):12201230. PubMed ID: 9375536 doi:10.1080/001401397187469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine. 1996;21(22):26402650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    MacDonald D, Moseley LG, Hodges PW. Why do some patients keep hurting their back? Evidence of ongoing back muscle dysfunction during remission from recurrent back pain. Pain. 2009;142(3):183188. doi:10.1016/j.pain.2008.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Cholewicki J, Silfies SP, Shah RA, et al. Delayed trunk muscle reflex responses increase the risk of low back injuries. Spine. 2005;30(23):26142620. doi:10.1097/01.brs.0000188273.27463.bc

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Cooper NA, Scavo KM, Strickland KJ, et al. Prevalence of gluteus medius weakness in people with chronic low back pain compared to healthy controls. Eur Spine J. 2016;25(4):12581265. PubMed ID: 26006705 doi:10.1007/s00586-015-4027-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Amabile AH, Bolte JH, Richter SD. Atrophy of gluteus maximus among women with a history of chronic low back pain. PLoS One. 2017;12(7):e0177008. PubMed ID: 28715424 doi:10.1371/journal.pone.0177008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Narouei S, Barati Ah, Akuzawa H, et al. Effects of core stabilization exercises on thickness and activity of trunk and hip muscles in subjects with nonspecific chronic low back pain. J Bodyw Mov Ther. 2020;24(4):138146. doi:10.1016/j.jbmt.2020.06.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Kato S, Demura S, Shinmura K, et al. Association of low back pain with muscle weakness, decreased mobility function, and malnutrition in older women: a cross-sectional study. PLoS One. 2021;16(1):e0245879. PubMed ID: 33493191 doi:10.1371/journal.pone.0245879

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Leinonen V, Kankaanpää M, Airaksinen O, Hänninen O. Back and hip extensor activities during trunk flexion/extension: effects of low back pain and rehabilitation. Arch Phys Med Rehabil. 2000;81(1):3237. PubMed ID: 10638873 doi:10.1016/S0003-9993(00)90218-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Hart JM, Fritz JM, Kerrigan DC, Saliba EN, Gansneder BM, Ingersoll CD. Quadriceps inhibition after repetitive lumbar extension exercise in persons with a history of low back pain. J Athl Train. 2006;41(3):264269. PubMed ID: 17043693

    • Search Google Scholar
    • Export Citation
  • 81.

    Mastenbrook MJ, Commean PK, Hillen TJ, et al. Hip abductor muscle volume and strength differences between women with chronic hip joint pain and asymptomatic controls. J Orthop Sports Phys Ther. 2017;47(12):923930. PubMed ID: 28992772 doi:10.2519/jospt.2017.7380

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Freke M, Kemp J, Semciw A, et al. Hip strength and range of movement are associated with dynamic postural control performance in individuals scheduled for arthroscopic hip surgery. J Orthop Sports Phys Ther. 2018;48(4):280288. doi:10.2519/jospt.2018.7946

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Behrends M, Yap EN, Zhang AL, et al. Preoperative fascia iliaca block does not improve analgesia after arthroscopic hip surgery, but causes quadriceps muscles weakness: a randomized, double-blind trial. Anesthesiology. 2018;129(3):536543. PubMed ID: 29975203 doi:10.1097/ALN.0000000000002321

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Loureiro A, Constantinou M, Diamond LE, Beck B, Barrett R. Individuals with mild-to-moderate hip osteoarthritis have lower limb muscle strength and volume deficits. BMC Musculoskelet Disord. 2018;19(1):303. PubMed ID: 30131064 doi:10.1186/s12891-018-2230-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Malloy P, Stone AV, Kunze KN, Neal WH, Beck EC, Nho SJ. Patients with unilateral femoroacetabular impingement syndrome have asymmetrical hip muscle cross-sectional area and compensatory muscle changes associated with preoperative pain level. Arthroscopy. 2019;35(5):14451453. PubMed ID: 30926193 doi:10.1016/j.arthro.2018.11.053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Shih Y, Fisher BE, Smith JA, Powers CM. Corticomotor excitability of gluteus maximus is associated with hip biomechanics during a single-leg drop-jump. J Mot Behav. 2021;53(1):4046. PubMed ID: 32090700 doi:10.1080/00222895.2020.1723480

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Lepley AS, Strouse AM, Ericksen HM, Pfile KR, Gribble PA, Pietrosimone BG. Relationship between gluteal muscle strength, corticospinal excitability, and jump-landing biomechanics in healthy women. J Sport Rehabil. 2013;22(4):239247. PubMed ID: 23628863 doi:10.1123/jsr.22.4.239

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Shih Y, Fisher BE, Kutch JJ, Powers CM. Corticomotor excitability of gluteus maximus and hip extensor strength: the influence of sex. Hum Mov Sci. 2021;78:102830. doi:10.1016/j.humov.2021.102830

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Devecchi V, Rushton AB, Gallina A, Heneghan NR, Falla D. Are neuromuscular adaptations present in people with recurrent spinal pain during a period of remission? A systematic review. PLoS One. 2021;16(4):e0249220. PubMed ID: 33793608 doi:10.1371/journal.pone.0249220

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Catelli DS, Ng KCG, Kowalski E, Beaulé PE, Lamontagne M. Modified gait patterns due to cam FAI syndrome remain unchanged after surgery. Gait Posture. 2019;72:135141. PubMed ID: 31200292 doi:10.1016/j.gaitpost.2019.06.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Cvetanovich GL, Farkas GJ, Beck EC, et al. Squat and gait biomechanics 6 months following hip arthroscopy for femoroacetabular impingement syndrome. J Hip Preserv Surg. 2020;7(1):2737. PubMed ID: 32382426 doi:10.1093/jhps/hnaa004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Zapparoli FY, Riberto M. Isokinetic evaluation of the hip flexor and extensor muscles: a systematic review. J Sport Rehabil. 2017;26(6):556566. PubMed ID: 27992245 doi:10.1123/jsr.2016-0036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Gilfeather D, Norte G, Ingersoll CD, Glaviano NR. Central activation ratio is a reliable measure for gluteal neuromuscular function. J Sport Rehabil. 2020;29(7):956962. doi:10.1123/jsr.2019-0243

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Ishøi L, Hölmich P, Thorborg K. Measures of hip muscle strength and rate of force development using a fixated handheld dynamometer: intra-tester intra-day reliability of a clinical set-up. Int J Sports Phys Ther. 2019;14(5):715723. doi:10.26603/ijspt20190715

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Beazell JR, Grindstaff TL, Hart JM, Magrum EM, Cullaty M, Shen FH. Changes in lateral abdominal muscle thickness during an abdominal drawing-in maneuver in individuals with and without low back pain. Res Sports Med. 2011;19(4):271282. doi:10.1080/15438627.2011.608053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Saliba SA, Croy TW, Grooms DR, Guthrie R, Weltman A, Grindstaff TL. Differences in transverse abdominus activation during a stable and unstable bridging exercise in individuals with low back pain. N Am J Sports Phys Ther. 2010;5(2):6373. PubMed ID: 21589663

    • Search Google Scholar
    • Export Citation
  • 97.

    DeJong AF, Koldenhoven RM, Hertel J. Cross-correlations between gluteal muscle thickness derived from ultrasound imaging and hip biomechanics during walking gait. J Electromyogr Kinesiol. 2020;51:102406. PubMed ID: 32105913 doi:10.1016/j.jelekin.2020.102406

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Tsao H, Galea MP, Hodges PW. Driving plasticity in the motor cortex in recurrent low back pain. Eur J Pain. 2010;14(8):832839. PubMed ID: 20181504 doi:10.1016/j.ejpain.2010.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Fisher BE, Lee YY, Pitsch EA, et al. Method for assessing brain changes associated with gluteus maximus activation. J Orthop Sports Phys Ther. 2013;43(4):214221. PubMed ID: 23485621 doi:10.2519/jospt.2013.4188

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    Bullock-Saxton JE, Janda V, Bullock MI. Reflex activation of gluteal muscles in walking. An approach to restoration of muscle function for patients with low-back pain. Spine. 1993;18(6):704708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Navalgund A, Buford JA, Briggs MS, Givens DL. Trunk muscle reflex amplitudes increased in patients with subacute, recurrent LBP treated with a 10-week stabilization exercise program. Motor Control. 2013;17(1):117. PubMed ID: 22964879 doi:10.1123/mcj.17.1.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102.

    Denteneer L, Stassijns G, De Hertogh W, Truijen S, Van Daele U. Inter- and intrarater reliability of clinical tests associated with functional lumbar segmental instability and motor control impairment in patients with low back pain: a systematic review. Arch Phys Med Rehabil. 2017;98(1):151164.e156. doi:10.1016/j.apmr.2016.07.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Biely SA, Silfies SP, Smith SS, Hicks GE. Clinical observation of standing trunk movements: what do the aberrant movement patterns tell us? J Orthop Sports Phys Ther. 2014;44(4):262272. PubMed ID: 24450372 doi:10.2519/jospt.2014.4988

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Mangum LC, Henderson K, Murray KP, Saliba SA. Ultrasound assessment of the transverse abdominis during functional movement. J Ultrasound Med. 2018;37(5):12251231. doi:10.1002/jum.14466

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Teyhen DS, Miltenberger CE, Deiters HM, et al. The use of ultrasound imaging of the abdominal drawing-in maneuver in subjects with low back pain. J Orthop Sports Phys Ther. 2005;35(6):346355. PubMed ID: 16001906 doi:10.2519/jospt.2005.35.6.346

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Koh E, Park K, Jung D. Effect of feedback techniques for lower back pain on gluteus maximus and oblique abdominal muscle activity and angle of pelvic rotation during the clam exercise. Phys Ther Sport. 2016;22:610. PubMed ID: 27579801 doi:10.1016/j.ptsp.2016.04.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107.

    McPherson SL, Watson T. Training of transversus abdominis activation in the supine position with ultrasound biofeedback translated to increased transversus abdominis activation during upright loaded functional tasks. PM R. 2014;6(7):612623. doi:10.1016/j.pmrj.2013.11.014

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1612 1226 50
Full Text Views 621 42 1
PDF Downloads 573 53 1