Is Tecar Therapy Effective on Biceps Femoris and Quadriceps Rehabilitation? A Cadaveric Study

in Journal of Sport Rehabilitation
View More View Less
  • 1 Facultad de Medicina y Ciencias de la Salud, Universitat Internacional de Catalunya, Barcelona, Spain
  • | 2 ACTIUM Functional Anatomy Group, Barcelona, Spain
  • | 3 Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Barcelona, Spain
  • | 4 Facultad de Ciencias de la Salud, Departamento de Fisiatría y Enfermería, Universidad de Zaragoza, Zaragoza, Spain
Restricted access

Background: Capacitive-resistive electric transfer therapy is an interesting rehabilitation treatment to use in musculoskeletal injuries. The purpose is to analyze the temperature change and current flow in superficial and deep biceps femoris and quadriceps tissues when applying different protocols of capacitive-resistive electric transfer therapy. Methods: Five cryopreserved cadavers (10 legs) were included in this study. Four interventions (high/low power) were performed for 5 minutes. Dynamic movements were performed to the biceps femoris and quadriceps. Superficial, middle, and deep temperature were recorded at 1-minute intervals and 5 minutes after the treatment using invasive temperature meters placed with ultrasound guidance. Results: Low-power applications have generated a very low thermal effect and an important current flow. The high-power capacitive application achieves a greater increase in superficial temperature compared with low power (P < .001). The high-power resistive application recorded a greater increase in superficial, middle, and deep temperatures with a greater current flow compared with the other applications (P < .001). Conclusion: This study could serve as basic science data to justify the acceleration of the processes of muscle recovery, improving cell proliferation without increasing the temperature in acute muscle injuries and increasing the temperature and viscoelasticity of the tissues in chronic processes with this therapy.

Rodríguez-Sanz https://orcid.org/0000-0003-0419-1943

López-de-Celis https://orcid.org/0000-0002-9524-4248

Hidalgo-García https://orcid.org/0000-0001-7667-2178

González-Rueda https://orcid.org/0000-0002-7137-3184

Bueno-Gracia https://orcid.org/0000-0002-0026-9224

Llurda-Almuzara https://orcid.org/0000-0001-9372-7580

Pérez-Bellmunt (aperez@uic.es) is corresponding author, https://orcid.org/0000-0002-5607-0708. Rodríguez-Sanz, Lo´pez-de-Celis, and Hidalgo-García all contributed equally to this work.

  • 1.

    Garrett WE, Rich FR, Nikolaou PK, Vogler JB. Computed tomography of hamstring muscle strains. Med Sci Sports Exerc. 1989;21(5):506514. PubMed ID: 2607944 doi:10.1249/00005768-198910000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Cross TM, Gibbs N, Houang MT, Cameron M. Acute quadriceps muscle strains: magnetic resonance imaging features and prognosis. Am J Sports Med. 2004;32(3):710719. PubMed ID: 15090389 doi:10.1177/0363546503261734

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hughes C, Hasselman CT, Best TM, Martinez S, Garrett WE. Incomplete, intrasubstance strain injuries of the rectus femoris muscle. Am J Sports Med. 1995;23(4):500506. PubMed ID: 7573664 doi:10.1177/036354659502300422

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Blasi M, De la Fuente J, Pérez-Bellmunt A, et al. High-resolution ultrasound in the assessment of the distal biceps brachii tendinous complex. Skeletal Radiol. 2019;48(3):395404. PubMed ID: 30187110 doi:10.1007/s00256-018-3043-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Moller I, Miguel-Perez M, Bong D, Pérez-Bellmunt A, Martinoli C. Sonoanatomic fundamentals of musculoskeletal ultrasound. Indian J Rheumatol. 2018;13(5):S4S8.

    • Search Google Scholar
    • Export Citation
  • 6.

    Comin J, Malliaras P, Baquie P, Barbour T, Connell D. Return to competitive play after hamstring injuries involving disruption of the central tendon. Am J Sports Med. 2013;41(1):111115. PubMed ID: 23111807 doi:10.1177/0363546512463679

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Connell DA, Schneider-Kolsky ME, Hoving JL, et al. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. Am J Roentgenol. 2004;183(4):975984. doi:10.2214/ajr.183.4.1830975

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Garrett WE. Muscle strain injuries. Am J Sport Med. 1996;24(suppl 6):S2S8. doi:10.1177/036354659602406S02

  • 9.

    Slavotinek JP, Verrall GM, Fon GT. Hamstring injury in athletes: Using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. Am J Roentgenol. 2002;179(6):16211628. doi:10.2214/ajr.179.6.1791621

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    De Smet AA, Best TM. MR imaging of the distribution and location of acute hamstring injuries in athletes. Am J Roentgenol. 2000;174(2):393399. doi:10.2214/ajr.174.2.1740393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Brukner P, Connell D. Serious thigh muscle strains: Beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains. Br J Sports Med. 2016;50(4):205208. PubMed ID: 26519522 doi:10.1136/bjsports-2015-095136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Wei S, Huard J. Tissue therapy. Implications of regenerative medicine for skeletal muscle. In: Atala A, Lanza R, Nerem R, Thomson J (eds.), Principles of Regenerative Medicine. Elsevier Inc.; 2008:12321247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Audette JF, Shah JP. The anatomy and physiology of the muscles. In: Myofascial Trigger Points: Comprehensive Diagnosis and Treatment. Elsevier Ltd; 2013:1725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Gharaibeh B, Deasy B, Lavasani M, Cummins JH, Li Y, Huard J. Musculoskeletal tissue injury and repair: Role of stem cells, their differentiation, and paracrine effects. In: Muscle. Vol 2. Elsevier Inc; 2012:881897. doi:10.1016/B978-0-12-381510-1.00062-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Girgis CM. Vitamin D and skeletal muscle. In: Hewison M, Bouillon R, Giovannucci E, Goltzman D (eds.), Vitamin D: Fourth Edition. Vol 1. Elsevier Inc; 2017:597612.

    • Search Google Scholar
    • Export Citation
  • 16.

    Hernández-Bule ML, Paíno CL, Trillo , Úbeda A. Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells. Cell Physiol Biochem. 2014;34(5):17411755. PubMed ID: 25427571 doi:10.1159/000366375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Shibaguchi T, Sugiura T, Fujitsu T, et al. Effects of icing or heat stress on the induction of fibrosis and/or regeneration of injured rat soleus muscle. J Physiol Sci. 2016;66(4):345357. PubMed ID: 26759024 doi:10.1007/s12576-015-0433-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Halle JS, Scoville CR, Greathouse DG. Ultrasound’s effect on the conduction latency of the superficial radial nerve in man. Phys Ther. 1981;61(3):345350. PubMed ID: 7465629 doi:10.1093/ptj/61.3.345

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Kelly R, Beehn C, Hansford A, Westphal KA, Halle JS, Greathouse DG. Effect of fluidotherapy on superficial radial nerve conduction and skin temperature. J Orthop Sports Phys Ther. 2005;35(1):1623. PubMed ID: 15754600 doi:10.2519/jospt.2005.35.1.16

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Knippertz I, Stein MF, Dörrie J, et al. Mild hyperthermia enhances human monocyte-derived dendritic cell functions and offers potential for applications in vaccination strategies. Int J Hyperthermia. 2011;27(6):591603. PubMed ID: 21846195 doi:10.3109/02656736.2011.589234

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Mace TA, Zhong L, Kokolus KM, Repasky EA. Effector CD8+ T cell IFN- γ production and cytotoxicity are enhanced by mild hyperthermia. Int J Hyperth. 2012;28(1):918. doi:10.3109/02656736.2011.616182

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Morishita K, Karasuno H, Yokoi Y, et al. Effects of therapeutic ultrasound on intramuscular blood circulation and oxygen dynamics. J Japanese Phys Ther Assoc. 2014;17(1):17. doi:10.1298/jjpta.Vol17_001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Tashiro Y, Hasegawa S, Yokota Y, et al. Effect of capacitive and resistive electric transfer on haemoglobin saturation and tissue temperature. Int J Hyperthermia. 2017;33(6):696702. PubMed ID: 28139939 doi:10.1080/02656736.2017.1289252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Costantino C, Pogliacomi F, Vaienti E. Cryoultrasound therapy and tendonitis in athletes: a comparative evaluation versus laser CO2 and t.e.ca.r. therapy. Acta Biomed. 2005;76(1):3741. PubMed ID: 16116824

    • Search Google Scholar
    • Export Citation
  • 25.

    Osti R, Pari C, Salvatori G, Massari L. Tri-length laser therapy associated to tecar therapy in the treatment of low-back pain in adults: a preliminary report of a prospective case series. Lasers Med Sci. 2015;30(1):407412. PubMed ID: 25376670 doi:10.1007/s10103-014-1684-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Takahashi K, Suyama T, Onodera M, Hirabayashi S, Tsuzuki N, Zhong-Shi L. Clinical effects of capacitive electric transfer hyperthermia therapy for lumbago. J Phys Ther Sci. 2004;11(1):4551. doi:10.1589/jpts.11.45

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Takahashi K, Suyama T, Takakura Y, Hirabayashi S, Tsuzuki N, Li Z-S. Clinical effects of capacitive electric transfer hyperthermia therapy for cervico-omo-brachial pain. J Phys Ther Sci. 2004;12(1):4348. doi:10.1589/jpts.12.43

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Cameron MH. Physical Agents in Rehabilitation: From Research to Practice. Elsevier Health Sciences; 2012.

  • 29.

    Hernández-Bule ML, Trillo , Úbeda A. Molecular mechanisms underlying antiproliferative and differentiating responses of hepatocarcinoma cells to subthermal electric stimulation. PLoS One. 2014;9(1):e84636. PubMed ID: 24416255 doi:10.1371/journal.pone.0084636

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    López-De-Celis C, Hidalgo-García C, Pérez-Bellmunt A, et al. Thermal and non-thermal effects off capacitive-resistive electric transfer application on the Achilles tendon and musculotendinous junction of the gastrocnemius muscle: a cadaveric study. BMC Musculoskelet Disord. 2020;21(1):46. PubMed ID: 31959172 doi:10.1186/s12891-020-3072-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    López-de-Celis C, Rodríguez-Sanz J, Hidalgo-García C, et al. Thermal and current flow effects of a capacitive–resistive electric transfer application protocol on chronic elbow tendinopathy. A cadaveric study. Int J Environ Res Public Health. 2021;18(3):1012. doi:10.3390/ijerph18031012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Rodríguez-Sanz J, López-de-Celis C, Hidalgo-García C, Canet-Vintró M, Fanlo-Mazas P, Pérez-Bellmunt A. Temperature and current flow effects of different electrode placement in shoulder capacitive-resistive electric transfer applications: a cadaveric study. BMC Musculoskelet Disord. 2021;22(1):139. PubMed ID: 33541324 doi:10.1186/s12891-020-03918-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Rodríguez-Sanz J, Pérez-Bellmunt A, López-de-Celis C, et al. Thermal and non-thermal effects of capacitive–resistive electric transfer application on different structures of the knee: a cadaveric study. Sci Rep. 2020;10(1):Article 22290. PubMed ID: 33339869 doi:10.1038/s41598-020-78612-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Yokota Y, Sonoda T, Tashiro Y, et al. Effect of capacitive and resistive electric transfer on changes in muscle flexibility and lumbopelvic alignment after fatiguing exercise. J Phys Ther Sci. 2018;30(5):719725. PubMed ID: 29765189 doi:10.1589/jpts.30.719

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Portney, L. Watkins M. Foundations of Clinical Research: Applications to Practice. 3rd ed. Appleton and Lange; 1993.

  • 36.

    Bito T, Tashiro Y, Suzuki Y, et al. Acute effects of capacitive and resistive electric transfer (CRet) on the Achilles tendon. Electromagn Biol Med. 2019;38(1):4854. PubMed ID: 30663425 doi:10.1080/15368378.2019.1567525

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 2003;19(3):267294. PubMed ID: 12745972 doi:10.1080/0265673031000119006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Yarmolenko PS, Moon EJ, Landon C, et al. Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia. 2011;27(4):320343. PubMed ID: 21591897 doi:10.3109/02656736.2010.534527

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Li HY, Hua YH. Achilles Tendinopathy: current Concepts about the Basic Science and Clinical Treatments. Biomed Res Int. 2016;2016:6492597. PubMed ID: 27885357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Favia D. Impiego della terapia cellulare attiva nel trattamento delle ipertrofie cicatriziali precoci da ustione [Minor]. Università degli studi di Bari Aldo Moro. Published online 2017.

    • Search Google Scholar
    • Export Citation
  • 41.

    Habets B, van den Broek AG, Huisstede BMA, Backx FJG, van Cingel REH. Return to sport in athletes with midportion achilles tendinopathy: a qualitative systematic review regarding definitions and criteria. Sports Med. 2018;48(3):705723. PubMed ID: 29249084 doi:10.1007/s40279-017-0833-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Rasmussen S, Christensen M, Mathiesen I, Simonson O. Shockwave therapy for chronic Achilles tendinopathy: a double-blind, randomized clinical trial of efficacy. Acta Orthop. 2008;79(2):249256. PubMed ID: 18484252 doi:10.1080/17453670710015058

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1017 1017 208
Full Text Views 7 7 2
PDF Downloads 15 15 4