Warming Up With a Dynamic Moment of Inertia Bat Can Increase Bat Swing Speed in Competitive Baseball Players

Click name to view affiliation

Tristan Castonguay Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada

Search for other papers by Tristan Castonguay in
Current site
Google Scholar
PubMed
Close
*
,
Mary Roberts Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada

Search for other papers by Mary Roberts in
Current site
Google Scholar
PubMed
Close
, and
Geoff Dover Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada
PERFORM Centre, Researcher, CRIR—Centre de Réadaptation Constance-Lethbridge du CIUSSS COMLT, Concordia University, Montreal, QC, Canada

Search for other papers by Geoff Dover in
Current site
Google Scholar
PubMed
Close
Restricted access

Introduction: While most baseball players’ warm-up with a weighted bat/donut, there is evidence to suggest the swing speed decreases after the warm-up even though the bat feels lighter. Warming up with a dynamic moment of inertia bat may not decrease the swing speed and therefore improve the performance of baseball players. The hypothesis is that a dynamic moment of inertia bat will negate the effect of the kinesthetic illusion observed with a weighted bat. Objective: To measure the difference in bat swing speed between warming up with the dynamic moment of inertia bat compared with a weighted bat. Methods: Thirty-nine competitive baseball players participated in the study. All players were randomly assigned a warm-up tool that could be either a dynamic moment of inertia bat or a weighted bat. After the players’ warm-up, they swung their normal bat, and the bat swing speed was measured using a high-speed camera. We used motion analysis software to calculate the swing speed which measured the linear displacement during the last 15 frames before ball contact. The process was then repeated so that each player had the chance to try both warm-up bats. Results: The post warm-up swing speeds using the dynamic moment of inertia bat were significantly faster compared with a weighted bat warm-up. There was a 0.56 (0.78) m/s (1.26 [1.74] mph) increase in swing speed when using the dynamic moment of inertia bat (P = .0001), which is an average increase of 2.10% compared with a weighted bat warm-up. Conclusions: Our findings suggest that using a dynamic moment of inertia bat before an at-bat can increase swing speed compared with a weighted warm-up. Future studies are needed to determine if using a dynamic moment of inertia bat as part of rehabilitation can facilitate returning to competition after injury by focusing on swing speed.

Castonguay (tristan.castonguay@mail.concordia.ca) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Gilmore SL, Brilla LR, Suprak DN, Chalmers GR, Dahlquist DT. Effect of a high-intensity isometric potentiating warm-up on bat velocity. J Strength Cond Res. 2019;33(1):7. PubMed ID: 30363035 doi:10.1519/JSC.0000000000002855

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Pillmeier C, Litzenberger S, Sabo A. The effect of on-deck warm-up routines in baseball on bat velocity, muscular activity and intensity in time-frequency space. Procedia Eng. 2012;34:230235. doi:10.1016/j.proeng.2012.04.040

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Rivera M, Leyva WD, Archer DC, et al. No effect of assisted hip rotation on bat velocity. Int J Exerc Sci. 2018;11(4):6874. PubMed ID: 29795730

    • Search Google Scholar
    • Export Citation
  • 4.

    Szymanski DJ, Beiser EJ, Bassett KE, et al. Effect of various warm-up devices on bat velocity of intercollegiate baseball players. J Strength Cond Res. 2011;25(2):287292. PubMed ID: 21240027 doi:10.1519/JSC.0b013e318202e31e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Dickson P. The New Dickson Baseball Dictionary: A Cyclopedic Reference to More Than 7,000 Words, Names, Phrases, and Slang Expressions that Define the Game, its Heritage, Culture, and Variations. 1st ed. Harcourt Brace & Co; 1999.

    • Search Google Scholar
    • Export Citation
  • 6.

    Laughlin WA, Fleisig GS, Aune KT, Diffendaffer AZ. The effects of baseball bat mass properties on swing mechanics, ground reaction forces, and swing timing. Sports Biomech. 2016;15(1):3647. PubMed ID: 26836969 doi:10.1080/14763141.2015.1123762

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Southard D, Groomer L. Warm-up with baseball bats of varying moments of inertia: effect on bat velocity and swing pattern. Res Q Exerc Sport. 2003;74(3):270276. PubMed ID: 14510291 doi:10.1080/02701367.2003.10609091

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Montoya BS, Brown LE, Coburn JW, Zinder SM. Effect of warm-up with different weighted bats on normal baseball bat velocity. J Strength Cond Res. 2009;23(5):15661569. PubMed ID: 19593220 doi:10.1519/JSC.0b013e3181a3929e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Nakamoto H, Ishii Y, Ikudome S, Ohta Y. Kinesthetic aftereffects induced by a weighted tool on movement correction in baseball batting. Hum Mov Sci. 2012;31(6):15291540. PubMed ID: 22698835 doi:10.1016/j.humov.2012.04.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ohkoshi K, Kikuchi Y. A study of kinesthetic illusion. J Hum Ergol. 1980;9(1):1521. PubMed ID: 7288162

  • 11.

    Otsuji T, Abe M, Kinoshita H. After-effects of using a weighted bat on subsequent swing velocity and batters’ perceptions of swing velocity and heaviness. Percept Mot Skills. 2002;94(1):119126. PubMed ID: 11883550 doi:10.2466/pms.2002.94.1.119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Raisbeck LD, Diekfuss JA, Grooms DR, Schmitz R. The effects of attentional focus on brain function during a gross motor task. J Sport Rehabil. 2020;29(4):441447. PubMed ID: 31629324 doi:10.1123/jsr.2018-0026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Hung T, Liu C, Shiang T. Application of dynamic moment of inertia on baseball bat. Engl Sports. 2004;5:175182.

  • 14.

    Liu C, Liu YC, Kao YC, Shiang TY. Effects of training with a dynamic moment of inertia bat on swing performance. J Strength Cond Res. 2011;25(11):29993005. PubMed ID: 21993041 doi:10.1519/JSC.0b013e318212e3b8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Fleisig G, Zheng N, Stodden D. Relationship between bat mass properties and bat velocity. Sports Eng. 2002;5(1):18. doi:10.1046/j.1460-2687.2002.00096.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hirotsu N. Reconsideration of the best batting order in baseball: is the order to maximize the expected number of runs really the best? J Quant Anal Sports. 2011;7(2):1–10. doi:10.2202/1559-0410.1332

    • Search Google Scholar
    • Export Citation
  • 17.

    Pavitt C. An estimate of how hitting, pitching, fielding, and basestealing impact team winning percentages in baseball. J Quant Anal Sports. 2011;7(4):1–18. doi:10.2202/1559-0410.1368

    • Search Google Scholar
    • Export Citation
  • 18.

    Freiman MH. Using random forests and simulated annealing to predict probabilities of election to the baseball hall of fame. J Quant Anal Sports. 2010;6(2):1–30. doi:10.2202/1559-0410.1245

    • Search Google Scholar
    • Export Citation
  • 19.

    Mills BM, Salaga S. Using tree ensembles to analyze National Baseball Hall of fame voting patterns: an application to discrimination in BBWAA voting. J Quant Anal Sports. 2011;7(4):1–30. doi:10.2202/1559-0410.1367

    • Search Google Scholar
    • Export Citation
  • 20.

    Lyu B, Smith LV. Evaluation of wireless bat swing speed sensors. Sports Eng. 2018;21(3):229234. doi:10.1007/s12283-017-0224-3

  • 21.

    Szymanski DJ, DeRenne C, Spaniol FJ. Contributing factors for increased bat swing velocity. J Strength Cond Res. 2009;23(4):13381352. PubMed ID: 19528868 doi:10.1519/JSC.0b013e318194e09c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Baker DG. Acute effect of alternating heavy and light resistances on power output during upper-body complex power training. J Strength Cond Res. 2003;17(3):493497. PubMed ID: 12930175

    • Search Google Scholar
    • Export Citation
  • 23.

    Sawicki GS, Hubbard M, Stronge WJ. How to hit home runs: optimum baseball bat swing parameters for maximum range trajectories. Am J Phys. 2003;71(11):11521162. doi:10.1119/1.1604384

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Maletsky LP, Sun J, Morton NA. Accuracy of an optical active-marker system to track the relative motion of rigid bodies. J Biomech. 2007;40:682685. PubMed ID: 16580000 doi:10.1016/j.jbiomech.2006.01.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Oyama S, Sosa A, Campbell R, Correa A. Reliability and validity of quantitative video analysis of baseball pitching motion. J Appl Biomech. 2017;33(1):6468. PubMed ID: 27705057 doi:10.1123/jab.2016-0011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Pueo B. High speed cameras for motion analysis in sports science. J Hum Sport Exerc. 2016;11(1):5373. doi:10.14198/jhse.2016.111.05

  • 27.

    Balsalobre-Fernández C, Tejero-González CM, del Campo-Vecino J, Bavaresco N. The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps. J Strength Cond Res. 2014;28(2):528533. PubMed ID: 23689339 doi:10.1519/JSC.0b013e318299a52e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Puig-Diví A, Escalona-Marfil C, Padullés-Riu JM, Busquets A, Padullés-Chando X, Marcos-Ruiz D. Validity and reliability of the Kinovea program in obtaining angles and distances using coordinates in 4 perspectives. PLoS One. 2019;14(6):e0216448. PubMed ID: 31166989 doi:10.1371/journal.pone.0216448

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Williams CC, Gdovin JR, Wilson SJ, et al. The effects of various weighted implements on baseball swing kinematics in collegiate baseball players. J Strength Cond Res. 2019;33(5):13471353. PubMed ID: 29019867 doi:10.1519/JSC.0000000000002020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Aguinaldo A. Baseball bat swing sensor validation. Cent Hum Perform. Published online August 16, 2016.

  • 31.

    Dowling B, Fleisig GS. Kinematic comparison of baseball batting off of a tee among various competition levels. Sports Biomech. 2016;15(3):255269. PubMed ID: 27278749 doi:10.1080/14763141.2016.1159320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen. 2012;141(1):218. PubMed ID: 21823805 doi:10.1037/a0024338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Beals N, Zhang L, Law M, Hwang D, Acharya J, Basu S. Physicochemical investigation into major league baseballs in the era of unprecedented rise in home runs. ACS Omega. 2019;4(23):2010920117. PubMed ID: 31815211 doi:10.1021/acsomega.9b00405

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Djuric S, Cuk I, Sreckovic S, Mirkov D, Nedeljkovic A, Jaric S. Selective effects of training against weight and inertia on muscle mechanical properties. Int J Sports Physiol Perform. 2016;11(7):927932. PubMed ID: 26788908 doi:10.1123/ijspp.2015-0527

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Polk R. Baseball Playbook. Sullivan’s Printing; 1978.

  • 36.

    Welch CM, Banks SA, Cook FF, Draovitch P. Hitting a baseball: a biomechanical description. J Orthop Sports Phys Ther. 1995;22(5):193201. PubMed ID: 8580946 doi:10.2519/jospt.1995.22.5.193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Higuchi T, Nagami T, Mizuguchi N, Anderson T. The acute and chronic effects of isometric contraction conditioning on baseball bat velocity. J Strength Cond Res. 2013;27(1):216222. PubMed ID: 23254491 doi:10.1519/JSC.0b013e318252ddba

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Blakemore SJ, Frith CD, Wolpert DM. Spatio-temporal prediction modulates the perception of self-produced stimuli. J Cogn Neurosci. 1999;11(5):551559. PubMed ID: 10511643 doi:10.1162/089892999563607

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Scott S, Gray R. Switching tools: perceptual-motor recalibration to weight changes. Exp Brain Res. 2010;201(2):177189. PubMed ID: 19789859 doi:10.1007/s00221-009-2022-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    de Azevedo Neto RM, Teixeira LA. Control of interceptive actions is based on expectancy of time to target arrival. Exp Brain Res. 2009;199(2):135143. PubMed ID: 19705111 doi:10.1007/s00221-009-1987-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Winston FK, Schwarz DF, Baker SP. Biomechanical epidemiology: a new approach to injury control research. J Trauma Acute Care Surg. 1996;40(5).820824. PubMed ID: 8614087 doi:10.1097/00005373-199605000-00024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Negus CH, Sih BL. Physical training outcome predictions with biomechanics, part II: overuse injury modeling. Mil Med. 2016;181(5) (suppl):8594. doi:10.7205/MILMED-D-15-00169

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2996 884 73
Full Text Views 127 83 1
PDF Downloads 109 51 1