Lower-Extremity Neuromuscular Function Following Concussion: A Preliminary Examination

Click name to view affiliation

Landon B. Lempke UGA Concussion Research Laboratory, University of Georgia, Athens, GA, USA
Department of Kinesiology, University of Georgia, Athens, GA, USA
Division of Sports Medicine, Boston Children’s Hospital, Boston, MA, USA
The Micheli Center for Sports Injury Prevention, Waltham, MA, USA

Search for other papers by Landon B. Lempke in
Current site
Google Scholar
PubMed
Close
*
,
Jarrod A. Call Department of Kinesiology, University of Georgia, Athens, GA, USA
Regenerative Bioscience Center, University of Georgia, Athens, GA, USA

Search for other papers by Jarrod A. Call in
Current site
Google Scholar
PubMed
Close
,
Matthew C. Hoch Sports Medicine Research Institute, University of Kentucky, Lexington, KY, USA

Search for other papers by Matthew C. Hoch in
Current site
Google Scholar
PubMed
Close
,
Julianne D. Schmidt UGA Concussion Research Laboratory, University of Georgia, Athens, GA, USA
Department of Kinesiology, University of Georgia, Athens, GA, USA

Search for other papers by Julianne D. Schmidt in
Current site
Google Scholar
PubMed
Close
, and
Robert C. Lynall UGA Concussion Research Laboratory, University of Georgia, Athens, GA, USA
Department of Kinesiology, University of Georgia, Athens, GA, USA

Search for other papers by Robert C. Lynall in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Neuromuscular function is altered acutely following concussion and theoretically linked to the subsequent postconcussion musculoskeletal injury risk. Existing research has only examined voluntary muscle activation, limiting mechanistic understanding. Therefore, our study aimed to examine voluntary and involuntary muscle activation between college-aged, concussed individuals when symptom-free and healthy matched controls. Design: Prospective, cross-sectional cohort laboratory study. Methods: Concussed and healthy participants (n = 24; 58% male, age: 19.3 [1.1] y, mass: 70.3 [16.4] kg, height: 177.3 [12.7] cm) completed the superimposed burst (SB) neuromuscular assessment on their dominant limb within 72 hours after self-reporting asymptomatic (22.4 [20.2] d postinjury). Unnormalized and bodyweight-normalized quadriceps maximal voluntary isometric contraction torque (in newton meters), unnormalized and bodyweight-normalized electrically stimulated SB torque, pain (numeric 1–10) during SB, and the central activation ratio (in percentage) were assessed via the SB. Parametric and nonparametric analyses, 95% confidence intervals (95% CIs), and Hedges g (parametric) and Spearman ρ (nonparametric) effect sizes were used to examine group differences (α = .05). Results: The maximal voluntary isometric contraction torque (concussed: 635.60 N·m [300.93] vs control: 556.27 N·m [182.46]; 95% CI, −131.36 to 290.02; P = .443; d = 0.33), SB torque (concussed: 203.22 N·m [97.17], control: 262.85 N·m [159.07]; 95% CI, −171.22 to 51.97; P = .280; d = −0.47), and central activation ratio (concussed: 72.16% [17.16], control: 70.09% [12.63]; 95% CI, −10.68 to 14.83; P = .740; d = 0.14) did not differ between the concussed and control groups regardless of bodyweight normalization (P ≥ .344). Pain during the SB was significantly higher with a medium effect for participants with a concussion versus healthy controls (concussed: median = 7, control: median = 5; P = .046; ρ = −0.42). Discussion: These findings suggest concussed participants do not have statistically altered voluntary or involuntary quadricep neuromuscular function once asymptomatic compared with controls. Therefore, the elevated postconcussion musculoskeletal injury risk may not be attributed to lower-extremity muscle activation. Concussed participants displayed greater pain perception during the SB, which suggests somatosensory or perception changes requiring further examination.

Lempke (landon.lempke@childrens.harvard.edu) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Cancelliere C, Coronado VG, Taylor CA, Xu L. Epidemiology of isolated versus nonisolated mild traumatic brain injury treated in emergency departments in the United States, 2006-2012: sociodemographic characteristics. J Head Trauma Rehabil. 2017;32(4):E37E46. PubMed ID: 28489698 doi:10.1097/HTR.0000000000000260

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838847. doi:10.1136/bjsports-2017-097699

    • Search Google Scholar
    • Export Citation
  • 3.

    Lempke LB, Schmidt JD, Lynall RC. Athletic trainers’ concussion-assessment and concussion-management practices: an update. J Athl Train. 2020;51(1):1726. doi:10.4085/1062-6050-322-18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Broglio SP, McAllister T, Katz BP, et al. The natural history of sport-related concussion in collegiate athletes: findings from the NCAA-DoD CARE Consortium. Sports Med. 2022;52(2):403415. PubMed ID: 34427877 doi:10.1007/s40279-021-01541-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Kerr ZY, Zuckerman SL, Wasserman EB, Covassin T, Djoko A, Dompier TP. Concussion symptoms and return to play time in youth, high school, and college American football athletes. JAMA Pediatr. 2016;170(7):647. PubMed ID: 27135397 doi:10.1001/jamapediatrics.2016.0073

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Wasserman E, Kerr ZY, Zuckerman SL, Covassin T. Epidemiology of sports-related concussions in national collegiate athletic association athletes from 2009-2010 to 2013-2014: symptom prevalence, symptom resolution time, and return-to-play time. Am J Sports Med. 2016;44(1):226233. PubMed ID: 26546304 doi:10.1177/0363546515610537

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Howell DR, Lynall RC, Buckley TA, Herman DC. Neuromuscular control deficits and the risk of subsequent injury after a concussion: a scoping review. Sports Med. 2018;48(5):10971115. PubMed ID: 29453743 doi:10.1007/s40279-018-0871-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Parker TM, Osternig LR, Van Donkelaar P, Chou LS. Gait stability following concussion. Med Sci Sports Exerc. 2006;38(6):10321040. PubMed ID: 16775541 doi:10.1249/01.mss.0000222828.56982.a4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Murray N, Belson E, Szekely B, et al. Baseline postural control and lower extremity injury incidence among those with a history of concussion. J Athl Train. 2020;55(2):109115. PubMed ID: 31935138 doi:10.4085/1062-6050-187-19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Buckley TA, Oldham JR, Caccese JB. Postural control deficits identify lingering post-concussion neurological deficits. J Sport Health Sci. 2016;5(1):6169. PubMed ID: 30356901 doi:10.1016/j.jshs.2016.01.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Schmidt JD, Terry DP, Ko J, Newell KM, Miller LS. Balance regularity among former high school football players with or without a history of concussion. J Athl Train. 2018;53(2):109114. PubMed ID: 29332469 doi:10.4085/1062-6050-326-16

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Chmielewski TL, Tatman J, Suzuki S, et al. Impaired motor control after sport-related concussion could increase risk for musculoskeletal injury: implications for clinical management and rehabilitation. J Sport Health Sci. 2021;10(2):154161. PubMed ID: 33188963 doi:10.1016/j.jshs.2020.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Eagle SR, Kontos AP, Pepping GJ, et al. Increased risk of musculoskeletal injury following sport-related concussion: a perception–action coupling approach. Sports Med. 2020;50(1):1523. PubMed ID: 31228023 doi:10.1007/s40279-019-01144-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Wilkerson GB, Grooms DR, Acocello SN. Neuromechanical considerations for postconcussion musculoskeletal injury risk management. Curr Sports Med Rep. 2017;16(6):419427. PubMed ID: 29135640 doi:10.1249/JSR.0000000000000430

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Büttner F, Howell DR, Ardern CL, et al. Concussed athletes walk slower than non-concussed athletes during cognitive-motor dual-task assessments but not during single-task assessments 2 months after sports concussion: a systematic review and meta-analysis using individual participant data. Br J Sports Med. 2020;54(2):94101. PubMed ID: 31331944 doi:10.1136/bjsports-2018-100164

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Fino PC, Nussbaum MA, Brolinson PG. Locomotor deficits in recently concussed athletes and matched controls during single and dual-task turning gait: preliminary results. J NeuroEngineering Rehabil. 2016;13(1):65. doi:10.1186/s12984-016-0177-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Howell DR, Buckley TA, Lynall RC, Meehan WP. Worsening dual-task gait costs after concussion and their association with subsequent sport-related injury. J Neurotrauma. 2018;35(14):16301636. PubMed ID: 29490564 doi:10.1089/neu.2017.5570

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Howell DR, Osternig LR, Chou LS. Adolescents demonstrate greater gait balance control deficits after concussion than young adults. Am J Sports Med. 2015;43(3):625632. PubMed ID: 25540297 doi:10.1177/0363546514560994

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    DuBose DF, Herman DC, Jones DL, et al. Lower extremity stiffness changes following concussion in collegiate football players. Med Sci Sports Exerc. 2017;49(1):167172. PubMed ID: 27501359 doi:10.1249/MSS.0000000000001067

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Lapointe AP, Nolasco LA, Sosnowski A, et al. Kinematic differences during a jump cut maneuver between individuals with and without a concussion history. Int J Psychophysiol. 2018;132:9398. PubMed ID: 28818697 doi:10.1016/j.ijpsycho.2017.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Lynall RC, Blackburn JT, Guskiewicz KM, Marshall SW, Plummer P, Mihalik JP. Reaction time and joint kinematics during functional movement in recently concussed individuals. Arch Phys Med Rehabil. 2018;99(5):880886. PubMed ID: 29337022 doi:10.1016/j.apmr.2017.12.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Avedesian JM, Covassin T, Dufek JS. Landing biomechanics in adolescent athletes with and without a history of sports-related concussion. J Appl Biomech. 2020;36(5):313318. doi:10.1123/jab.2020-0034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lynall RC, Mauntel TC, Pohlig RT, et al. Lower extremity musculoskeletal injury risk after concussion recovery in high school athletes. J Athl Train. 2017;52(11):10281034. PubMed ID: 29140128 doi:10.4085/1062-6050-52.11.22

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Lynall RC, Mauntel TC, Padua DA, Mihalik JP. Acute lower extremity injury rates increase after concussion in college athletes. Med Sci Sports Exerc. 2015;47(12):24872492. PubMed ID: 26057941 doi:10.1249/MSS.0000000000000716

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    McPherson AL, Nagai T, Webster KE, Hewett TE. Musculoskeletal injury risk after sport-related concussion: a systematic review and meta-analysis. Am J Sports Med. 2019;47(7):17541762. PubMed ID: 30074832 doi:10.1177/0363546518785901

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kardouni JR, Shing TL, McKinnon CJ, Scofield DE, Proctor SP. Risk for lower extremity injury after concussion: a matched cohort study in soldiers. J Orthop Sports Phys Ther. 2018;48(7):533540. PubMed ID: 29739302 doi:10.2519/jospt.2018.8053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Jildeh TR, Castle JP, Buckley PJ, Abbas MJ, Hegde Y, Okoroha KR. Lower extremity injury after return to sports from concussion: a systematic review. Orthop J Sports Med. 2022;10(1):23259671211068438. PubMed ID: 35111864 doi:10.1177/23259671211068438

    • Search Google Scholar
    • Export Citation
  • 28.

    Reed N, Taha T, Monette G, Keightley M. A preliminary exploration of concussion and strength performance in youth ice hockey players. Int J Sports Med. 2016;37(9):708713. PubMed ID: 27191209 doi:10.1055/s-0042-104199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Toong T, Wilson KE, Hunt AW, Scratch S, DeMatteo C, Reed N. Sensitivity and specificity of a multimodal approach for concussion assessment in youth athletes. J Sport Rehabil. 2021;30(6):850859. PubMed ID: 33547256 doi:10.1123/jsr.2020-0279

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Eagle SR, Kontos AP, Mi Q, et al. Shared neuromuscular performance traits in military personnel with prior concussion. Med Sci Sports Exerc. 2019;51(8):16191625. PubMed ID: 30845049 doi:10.1249/MSS.0000000000001974

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Rozand V, Grosprêtre S, Stapley PJ, Lepers R. Assessment of neuromuscular function using percutaneous electrical nerve stimulation. J Vis Exp. 2015;(103):52974. doi:10.3791/52974

    • Search Google Scholar
    • Export Citation
  • 32.

    Hart JM, Weltman A, Ingersoll CD. Quadriceps activation following aerobic exercise in persons with low back pain and healthy controls. Clin Biomech. 2010;25(8):847851. doi:10.1016/j.clinbiomech.2010.05.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Livingston SC, Saliba EN, Goodkin HP, Barth JT, Hertel JN, Ingersoll CD. A preliminary investigation of motor evoked potential abnormalities following sport-related concussion. Brain Inj. 2010;24(6):904913. PubMed ID: 20433286 doi:10.3109/02699051003789245

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Palmieri RM, Ingersoll CD, Hoffman MA. The hoffmann reflex: methodologic considerations and applications for use in sports medicine and athletic training research. J Athl Train. 2004;39(3):268277. PubMed ID: 16558683

    • Search Google Scholar
    • Export Citation
  • 35.

    Hart JM, Pietrosimone B, Hertel J, Ingersoll CD. Quadriceps activation following knee injuries: a systematic review. J Athl Train. 2010;45(1):8797. PubMed ID: 20064053 doi:10.4085/1062-6050-45.1.87

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation: ACLr neural alterations. Scand J Med Sci Sports. 2015;25(6):828839. PubMed ID: 25693627 doi:10.1111/sms.12435

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Sedory EJ, McVey ED, Cross KM, Ingersoll CD, Hertel J. Arthrogenic muscle response of the quadriceps and hamstrings with chronic ankle instability. J Athl Train. 2007;42(3):355360. PubMed ID: 18059990

    • Search Google Scholar
    • Export Citation
  • 38.

    Diekfuss JA, Grooms DR, Yuan W, et al. Does brain functional connectivity contribute to musculoskeletal injury? a preliminary prospective analysis of a neural biomarker of ACL injury risk. J Sci Med Sport. 2019;22(2):169174. PubMed ID: 30017465 doi:10.1016/j.jsams.2018.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    De Beaumont L, Mongeon D, Tremblay S, et al. Persistent motor system abnormalities in formerly concussed athletes. J Athl Train. 2011;46(3):234240. PubMed ID: 21669091

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Wang Y, Nelson LD, LaRoche AA, et al. Cerebral blood flow alterations in acute sport-related concussion. J Neurotrauma. 2016;33(13):12271236. PubMed ID: 26414315 doi:10.1089/neu.2015.4072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Lempke LB, Hoch MC, Call JA, Schmidt JD, Lynall RC. Lower extremity somatosensory function throughout concussion recovery: a prospective cohort study. J Head Trauma Rehabil. 2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Echemendia RJ, Meeuwisse W, McCrory P, et al. The sport concussion assessment tool 5th edition (SCAT5): background and rationale. Br J Sports Med. 2017;51(11):848850. doi:10.1136/bjsports-2017-097506

    • Search Google Scholar
    • Export Citation
  • 43.

    Hoffman NL, O’Connor PJ, Schmidt MD, Lynall RC, Schmidt JD. Differences in sleep between concussed and nonconcussed college students: a matched case-control study. Sleep. 2019;42(2):1–11. doi:10.1093/sleep/zsy222

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Lempke LB, Lynall RC, Hoffman NL, Devos H, Schmidt JD. Slowed driving reaction time following concussion symptom resolution. J Sport Health Sci. 2021;10(2):145153. PubMed ID: 32961301 doi:10.1016/j.jshs.2020.09.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Schmidt JD, Hoffman NL, Ranchet M, et al. Driving after concussion: is it safe to drive after symptoms resolve? J Neurotrauma. 2017;34(8):15711578. PubMed ID: 27959745 doi:10.1089/neu.2016.4668

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Chin EY, Nelson LD, Barr WB, McCrory P, McCrea MA. Reliability and Validity of the Sport Concussion Assessment Tool-3 (SCAT3) in high school and collegiate athletes. Am J Sports Med. 2016;44(9):22762285. PubMed ID: 27281276 doi:10.1177/0363546516648141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Lempke L, Jaffri A, Erdman N. The effects of early physical activity compared to early physical rest on concussion symptoms. J Sport Rehabil. 2019;28(1):99105. PubMed ID: 28952910 doi:10.1123/jsr.2017-0217

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Flosadottir V, Roos EM, Ageberg E. Muscle function is associated with future patient-reported outcomes in young adults with ACL injury. BMJ Open Sport Exerc Med. 2016;2(1):e000154. PubMed ID: 27900196 doi:10.1136/bmjsem-2016-000154

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Briggs KK, Lysholm J, Tegner Y, Rodkey WG, Kocher MS, Steadman JR. The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am J Sports Med. 2009;37(5):890897. PubMed ID: 19261899 doi:10.1177/0363546508330143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Tajdini H, Letafatkar A, Brewer BW, Hosseinzadeh M. Association between kinesiophobia and gait asymmetry after ACL reconstruction: implications for prevention of reinjury. Int J Environ Res Public Health. 2021;18(6):3264. PubMed ID: 33809935 doi:10.3390/ijerph18063264

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Ashigbi EYK, Banzer W, Niederer D. Return to sport tests’ prognostic value for reinjury risk after anterior cruciate ligament reconstruction: a systematic review. Med Sci Sports Exerc. 2020;52(6):12631271. PubMed ID: 31895299 doi:10.1249/MSS.0000000000002246

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Woby SR, Roach NK, Urmston M, Watson PJ. Psychometric properties of the TSK-11: a shortened version of the tampa scale for kinesiophobia. Pain. 2005;117(1):137144. doi:10.1016/j.pain.2005.05.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Anderson MN, Womble MN, Mohler SA, et al. Preliminary study of fear of re-injury following sport-related concussion in high school athletes. Dev Neuropsychol. 2019;44(6):443451. PubMed ID: 31537099 doi:10.1080/87565641.2019.1667995

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Reinking S, Seehusen CN, Walker GA, Wilson JC, Howell DR. Transitory kinesiophobia after sport-related concussion and its correlation with reaction time. J Sci Med Sport. 2022;25(1):2024. PubMed ID: 34404602 doi:10.1016/j.jsams.2021.07.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Houston MN, Hoch JM, Cameron KL, Abt JP, Peck KY, Hoch MC. Sex and number of concussions influence the association between concussion and musculoskeletal injury history in collegiate athletes. Brain Inj. 2018;32(11):13531358. PubMed ID: 30136896 doi:10.1080/02699052.2018.1512718

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Houston MN, Hoch JM, Van Lunen BL, Hoch MC. The impact of injury on health-related quality of life in college athletes. J Sport Rehabil. 2017;26(5):365375. PubMed ID: 27632873 doi:10.1123/jsr.2016-0011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Grindstaff TL, Threlkeld AJ. Optimal stimulation parameters to detect deficits in quadriceps voluntary activation: J Strength Cond Res. 2014;28(2):381389. PubMed ID: 23669820 doi:10.1519/JSC.0b013e3182986d5f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Park ND, Maresca RD, McKibans KI, Morgan DR, Allen TS, Warren GL. Caffeine’s beneficial effect on maximal voluntary strength and activation in uninjured but not injured muscle. Int J Sport Nutr Exerc Metab. 2008;18(6):639652. PubMed ID: 19164833 doi:10.1123/ijsnem.18.6.639

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Cureton KJ, Warren GL, Millard-Stafford ML, Wingo JE, Trilk J, Buyckx M. Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metab. 2007;17(1):3555. PubMed ID: 17460332 doi:10.1123/ijsnem.17.1.35

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Pietrosimone BG, Selkow NM, Ingersoll CD, Hart JM, Saliba SA. Electrode type and placement configuration for quadriceps activation evaluation. J Athl Train. 2011;46(6):621628. PubMed ID: 22488187 doi:10.4085/1062-6050-46.6.621

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Norte GE, Frye JL, Hart JM. Reliability of the superimposed-burst technique in patients with patellofemoral pain: a technical report. J Athl Train. 2015;50(11):12071211. PubMed ID: 26636730 doi:10.4085/1062-6050-50.10.03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Erlbaum Associates; 1988.

  • 63.

    Shield A, Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004;34(4):253267. PubMed ID: 15049717 doi:10.2165/00007256-200434040-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ. Principles of Neural Science. 5th ed. McGraw-Hill Education; 2013.

  • 65.

    Scott E, Kidgell DJ, Frazer AK, Pearce AJ. The neurophysiological responses of concussive impacts: a systematic review and meta-analysis of transcranial magnetic stimulation studies. Front Hum Neurosci. 2020;14:306. PubMed ID: 33192374 doi:10.3389/fnhum.2020.00306

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train. 2002;37(1):7179. PubMed ID: 16558670

    • Search Google Scholar
    • Export Citation
  • 67.

    Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75(4):S24S33. doi:10.1227/NEU.0000000000000505

All Time Past Year Past 30 Days
Abstract Views 2016 521 33
Full Text Views 216 115 0
PDF Downloads 186 63 0