Comparison of Sensorimotor Integration and Skill-Related Physical Fitness Components Between College Athletes With and Without Forward Head Posture

in Journal of Sport Rehabilitation

Click name to view affiliation

Ibrahim Moustafa Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
Neuromusculoskeletal Rehabilitation Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates

Search for other papers by Ibrahim Moustafa in
Current site
Google Scholar
PubMed
Close
*
,
Meeyoung Kim Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates

Search for other papers by Meeyoung Kim in
Current site
Google Scholar
PubMed
Close
, and
Deed E. Harrison Neuromusculoskeletal Rehabilitation Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
Ideal Spine Health, Eagle, ID, USA

Search for other papers by Deed E. Harrison in
Current site
Google Scholar
PubMed
Close
Restricted access

Objective: To evaluate sensorimotor integration and skill-related physical fitness components for participants with forward head posture (FHP) compared with strictly matched controls with normal head alignment. Material and Methods: We measured FHP, sensorimotor processing, and skill-related physical fitness variables in 50 participants with FHP and in 50 participants matched for age, gender, and body mass index with normal FHP, defined as having a craniovertebral angle >55°. Sensorimotor processing and integration variables were: (1) amplitudes of the spinal N13, (2) brainstem P14, (3) parietal N20 and P27, and (4) frontal N30 potentials. The skill-related physical fitness variables selected for the study were (1) T-test agility, (2) leg power, (3) stork static balance test, and (4) Y-balance test. Results: There was a statistically significant difference between the FHP group and control group for the sensorimotor integration variable: frontal N30 potentials (P < .05). Additionally, between-group differences were found for the sensorimotor processing variables: amplitudes of spinal N13, brainstem P14, and parietal N20, and P27 (P < .05). Statistically significant differences between groups for the skill-related physical fitness variables were also identified: T-test agility, leg power, stork static balance test, and Y-balance test (P < .05). The magnitude of the craniovertebral angle showed a correlation with all measured variables (P < .05). Conclusion: College athletes with FHP exhibited altered sensorimotor processing and integration measurements and less efficient skill-related physical fitness compared with athletes with normal sagittal head posture alignment.

Moustafa (iabuamr@sharjah.ac.ae) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Machado S, Cunha M, Velasques B, et al. Sensorimotor integration: basic concepts, abnormalities related to movement disorders and sensorimotor training-induced cortical reorganization. Rev Neurol. 2010;51:427436. PubMed ID: 20859923 doi:10.33588/rn.5107.2010228

    • Search Google Scholar
    • Export Citation
  • 2.

    Machado D, Bastos VH, Cunha M, et al. Efectos del bromacepam en el desarrollo de una actividad sensoriomotora: un estudio electroencefalográfico. Rev Neurol. 2009;49:295299. PubMed ID: 19728275

    • Search Google Scholar
    • Export Citation
  • 3.

    Rosenkranz K, Rothwell JC. The effect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. J Physiol. 2004;561(1):307320. PubMed ID: 15388776 doi:10.1113/jphysiol.2004.069328

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bolognini N, Russo C, Edwards DJ. The sensory side of post-stroke motor rehabilitation. Restor Neurol Neurosci. 2016;34:571586. PubMed ID: 27080070 doi:10.3233/RNN-150606

    • Search Google Scholar
    • Export Citation
  • 5.

    Daligadu J, Haavik H, Yielder PC, Baarbe J, Murphy B. Alterations in cortical and cerebellar motor processing in subclinical neck pain patients following spinal manipulation. J Manipulative Physiol Ther. 2013;36(8):527537. PubMed ID: 24035521 doi:10.1016/j.jmpt.2013.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Haavik-Taylor H, Murphy B. Cervical spine manipulation alters sensorimotor integration: a somatosensory evoked potential study. Clin Neurophysiol. 2007;118(2):391402. PubMed ID: 17137836 doi:10.1016/j.clinph.2006.09.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Taylor HH, Murphy B. Altered sensorimotor integration with cervical spine manipulation. J Manipulative Physiol Ther. 2008;31(2):115126. PubMed ID: 18328937 doi:10.1016/j.jmpt.2007.12.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Taylor HH, Murphy B. Altered central integration of dual somatosensory input after cervical spine manipulation. J Manipulative Physiol Ther. 2010;33(3):178188. PubMed ID: 20350670 doi:10.1016/j.jmpt.2010.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Scheer JK, Lau D, Smith JS, et al. Alignment, classification, clinical evaluation, and surgical treatment for adult cervical deformity: a complete guide. Neurosurgery. 2021;88(4):864883. PubMed ID: 33548924 doi:10.1093/neuros/nyaa582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Smith JS, Lafage V, Ryan DJ, et al. Association of myelopathy scores with cervical sagittal balance and normalized spinal cord volume. Spine. 2013;38 (22 suppl 1):S161S170. PubMed ID: 23963001 doi:10.1097/BRS.0b013e3182a7eb9e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Ling FP, Chevillotte T, Leglise A, Thompson W, Bouthors C, Le Huec JC. Which parameters are relevant in sagittal balance analysis of the cervical spine? A literature review. Eur Spine J. 2018;27(suppl):815. PubMed ID: 29332239 doi:10.1007/s00586-018-5462-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Moustafa IM, Diab A, Shousha T, Harrison DE. Does restoration of sagittal cervical alignment improve cervicogenic headache pain and disability: a 2-year pilot randomized controlled trial. Heliyon. 2021;7(3):e06467. PubMed ID: 33786392 doi:10.1016/j.heliyon.2021.e06467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Moustafa IM, Diab AA, Hegazy F, Harrison DE. Does improvement towards a normal cervical sagittal configuration aid in the management of cervical myofascial pain syndrome: a 1-year randomized controlled trial. BMC Musculoskelet Disord. 2018;19(1):396. PubMed ID: 30419868 doi:10.1186/s12891-018-2317-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Moustafa IM, Diab AA, Harrison DE. The effect of normalizing the sagittal cervical configuration on dizziness, neck pain, and cervicocephalic kinesthetic sensibility: a 1-year randomized controlled study. Eur J Phys Rehabil Med. 2017;53(1):5771. PubMed ID: 27575013 doi:10.23736/S1973-9087.16.04179-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Moustafa IM, Diab AA, Taha S, Harrison DE. Addition of a sagittal cervical posture corrective orthotic device to a multimodal rehabilitation program improves short- and long-term outcomes in patients with discogenic cervical radiculopathy. Arch Phys Med Rehabil 2016;97(12):20342044. PubMed ID: 27576192 doi:10.1016/j.apmr.2016.07.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Yip CHT, Chiu TTW, Poon ATK. The relationship between head posture and severity and disability of patients with neck pain. Man Ther. 2008;13(2):148154. PubMed ID: 17368075 doi:10.1016/j.math.2006.11.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Garcia I, Alacreu H, Diaz S, Pedron M, Martinez A. Chronic primary headache subjects have greater forward head posture than asymptomatic and episodic headache sufferers: Systematic review and meta-analysis. Pain Med 2020;21(10): 24652480. PubMed ID: 33118601 doi:10.1093/pm/pnaa235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Patwardhan AG, Khayatzadeh S, Havey RM, et al. Cervical sagittal balance: a biomechanical perspective can help clinical practice. Eur Spine J. 2018;27(suppl):2538. PubMed ID: 29110218 doi:10.1007/s00586-017-5367-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Tan LA, Riew KD, Traynelis VC. Cervical spine deformity-part 1: biomechanics, radiographic parameters, and classification. Neurosurgery. 2017;81(2):197203. PubMed ID: 28838143 doi:10.1093/neuros/nyx249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Moustafa IM, Youssef A, Ahbouch A, Tamim M, Harrison DE. Is forward head posture relevant to autonomic nervous system function and cervical sensorimotor control? A cross sectional study. Gait Posture. 2020;77:2935. PubMed ID: 31955048 doi:10.1016/j.gaitpost.2020.01.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Moustafa I, Youssef ASA, Ahbouch A, Harrison D. Demonstration of autonomic nervous function and cervical sensorimotor control after cervical lordosis rehabilitation: a randomized controlled trial. J Athl Train. 2021;56(4):427436. PubMed ID: 33543266 doi:10.4085/1062-6050-0481.19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    DeMet T, Wahl-Alexander Z. Integrating skill-related components of fitness into physical education. Strategies. 2019;32(5):1017. doi:10.1080/08924562.2019.1637315

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Rossi S, della Volpe R, Ginanneschi F, et al. Early somatosensory processing during tonic muscle pain in humans: relation to loss of proprioception and motor “defensive” strategies. Clin Neurophysiol. 2003;114(7):13511358. PubMed ID: 12842734 doi:10.1016/S1388-2457(03)00073-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Nuwer MR, Aminoff M, Desmedt J, et al. IFCN recommended standards for short latency somatosensory evoked potentials. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol. 1994;91(1):611. PubMed ID: 7517845 doi:10.1016/0013-4694(94)90012-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Van Niekerk SM, Louw Q, Vaughan C, Grimmer-Somers K, Schreve K. Photographic measurement of upper-body sitting posture of high school students: a reliability and validity study. BMC Musculoskelet Disord. 2008;9(1):113. PubMed ID: 18713477 doi:10.1186/1471-2474-9-113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Abbaszadeh Amirdehi M, Hosseini S, Sam S, Irani S, Mirasi S. Evaluation of head position using craniovertebral angle in two sitting and standing positions in the elderly. J Babol Univ Med Sci. 2020;22:3138.

    • Search Google Scholar
    • Export Citation
  • 27.

    Falla D, Jull G, Russell T, Vicenzino B, Hodges P. Effect of neck exercise on sitting posture in patients with chronic neck pain. Phys Ther. 2007;87(4):408417. PubMed ID: 17341512 doi:10.2522/ptj.20060009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Ulas UH, Özdag F, Eroglu E, et al. Median nerve somatosensory evoked potentials recorded with cephalic and noncephalic references in central and peripheral nervous system lesions. Clin EEG Neurosci. 2001;32(4):191196.

    • Search Google Scholar
    • Export Citation
  • 29.

    Dumitru D, Amato AA and Zwarts MJ. Electrodiagnostic Medicine. 2nd ed. Hanley & Belfus, San Antonio. 2021.

  • 30.

    Tinazzi M, Fiaschi A, Rosso T, Faccioli F, Grosslercher J, Aglioti SM. Neuroplastic changes related to pain occur at multiple levels of the human somatosensory system: a somatosensory-evoked potentials study in patients with cervical radicular pain. J Neurosci. 20(24):92779283. doi:10.1523/JNEUROSCI.20-24-09277.2000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Desmedt JE, Cheron G. Prevertebral (oesophageal) recording of subcortical somatosensory evoked potentials in man: the spinal P13 component and the dual nature of the spinal generators. Electroencephalogr Clin Neurophysiol. 1981;52(4):257275. PubMed ID: 6169503 doi:10.1016/0013-4694(81)90055-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Allison T, McCarthy G, Wood CC, Jones SJ. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain. 1991;114(pt 6):24652503. PubMed ID: 1782527 doi:10.1093/brain/114.6.2465

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Mauguière F, Desmedt JE, Courjon J. Astereognosis and dissociated loss of frontal or parietal components of somatosensory evoked potentials in hemispheric lesions. Detailed correlations with clinical signs and computerized tomographic scanning. Brain. 1983;106 (2):271311. PubMed ID: 6850271 doi:10.1093/brain/106.2.271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Pauole K, Madole K, Garhammer J, Lacourse M, Rozenek R. Reliability and validity of the t-test as a measure of agility, leg power, and leg speed in college-aged men and women. J Strength Cond Res. 2000;14(4):443450. doi:10.1519/00124278-200011000-00012

    • Search Google Scholar
    • Export Citation
  • 35.

    Raya MA, Gailey RS, Gaunaurd IA, et al. Comparison of three agility tests with male servicemembers: Edgren Side Step Test, T-Test, and Illinois Agility Test. J Rehabil Res Dev. 2013;50(7):951960. doi:10.1682/JRRD.2012.05.0096

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Van Hooren B, Zolotarjova J. The difference between countermovement and squat jump performances: a review of underlying mechanisms with practical applications. J Strength Cond Res. 2017;31(7):20112020. PubMed ID: 28640774 doi:10.1519/JSC.0000000000001913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Negra Y, Chaabene H, Sammoud S, et al. Effects of plyometric training on physical fitness in prepuberal soccer athletes. Int J Sports Med. 2017;38(05):370377. doi:10.1055/s-0042-122337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Sattler T, Sekulic D, Hadzic V, Uljevic O, Dervisevic E. Vertical jumping tests in volleyball: reliability, validity, and playing position specifics. J Strength Cond Res 2012;26(6):15321538. PubMed ID: 21904238 doi:10.1519/JSC.0b013e318234e838

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Hammami R, Granacher U, Makhlouf I, Behm DG, Chaouachi A. Sequencing effects of balance and plyometric training on physical performance in youth soccer athletes. J Strength Cond Res. 2016;30(12):32783289. PubMed ID: 27144955 doi:10.1519/JSC.0000000000001425

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Schwiertz G, Brueckner D, Schedler S, Kiss R, Muehlbauer T. Performance and reliability of the lower quarter y balance test in healthy adolescents from grade 6 to 11. Gait Posture. 2019;67:142146. PubMed ID: 30336348 doi:10.1016/j.gaitpost.2018.10.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Academic Press; 1977.

  • 42.

    Wyrwich KW, Tierney WM, Wolinsky FD. Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life. J Clin Epidemiol. 1999;52(9):861873. PubMed ID: 10529027 doi:10.1016/S0895-4356(99)00071-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Wolinsky FD, Wan GJ, Tierney WM. Changes in the SF-36 in 12 months in a clinical sample of disadvantaged older adults. Med Care. 1998;36(11):15891598. PubMed ID: 9821946 doi:10.1097/00005650-199811000-00008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    McHorney CA, Tarlov AR. Individual-patient monitoring in clinical practice: are available health status surveys adequate? Qual Life Res. 1995;4(4):293307. PubMed ID: 7550178 doi:10.1007/BF01593882

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Jacobson NS, Truax P. Clinical Significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol. 1991;59:1219. PubMed ID: 2002127 doi:10.1037//0022-006x.59.1.12

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Parker JL, Dostrovsky JO. Cortical involvement in the induction, but not expression, of thalamic plasticity. J Neurosci. 1999;19(19):86238629. PubMed ID: 10493762 doi:10.1523/JNEUROSCI.19-19-08623.1999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Florence SL, Hackett TA, Strata F. Thalamic and cortical contributions to neural plasticity after limb amputation. J Neurophysiol. 2000;83(5):31543159. PubMed ID: 10805710 doi:10.1152/jn.2000.83.5.3154

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Haavik H, Murphy B. The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control. J Electromyogr Kinesiol. 2012;22(5):768776. PubMed ID: 22483612 doi:10.1016/j.jelekin.2012.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Tinazzi M, Priori A, Bertolasi L, Frasson E, Mauguière F, Fiaschi A. Abnormal central integration of a dual somatosensory input in dystonia: Evidence for sensory overflow. Brain. 2000;123(pt 1):4250. PubMed ID: 10611119 doi:10.1093/brain/123.1.42

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Harrison DE, Jones EW, Janik TJ, Harrison DD. Evaluation of axial and flexural stresses in the vertebral body cortex and trabecular bone in lordosis and two sagittal cervical translation configurations with an elliptical shell model. J Manipulative Physiol Ther. 2002;25(6):391401. PubMed ID: 12183697 doi:10.1067/mmt.2002.126128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Fernandez-de-las-Penas C, Alonso-Blanco C, Cuadrado ML, Pareja JA. Forward head posture and neck mobility in chronic tension-type headache: a blinded, controlled study. Cephalgia. 2006;26(3):314319. PubMed ID: 16472338 doi:10.1111/j.1468-2982.2005.01042.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Khayatzadey S, Kalmanson OA, Schuit D, et al. Cervical spine muscle-tendon unit length differences between neutral and forward head postures: biomechanical study using human cadaveric specimens. Phys Ther 2017;97(7):756766. PubMed ID: 28444241 doi:10.1093/ptj/pzx040

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Lewis JS, Green A, Wright C. Subacromial impingement syndrome: the role of posture and muscle imbalance. J Shoulder Elbow Surg. 2005;14(4):385392. PubMed ID: 16015238 doi:10.1016/j.jse.2004.08.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Thigpen CA, Padua DA, Michener LA, et al. Head and shoulder posture affect scapular mechanics and muscle activity in overhead tasks. J Electromyogr Kinesiol. 2010;20(4):701709. PubMed ID: 20097090 doi:10.1016/j.jelekin.2009.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Kibler WB, McMullen J. Scapular dyskinesis and its relation to shoulder pain. J Am Acad Orthop Surg. 2003;11(2):142151. PubMed ID: 12670140 doi:10.5435/00124635-200303000-00008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Hishinuma M, Yamaguchi T. Axonal projection of descending pathways responsible for eliciting forelimb stepping into the cat cervical spinal cord. Exp Brain Res. 1990;82(3):597605. PubMed ID: 1705518 doi:10.1007/BF00228801

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Knight RT, Staines WR, Swick D, Chao LL. Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol. 1999;101:159178. PubMed ID: 10344184 doi:10.1016/s0001-6918(99)00004-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Sun A, Yeo HG, Kim TU, Hyun JK, Kim JY. Radiologic assessment of forward head posture and its relation to myofascial pain syndrome. Ann Rehabil Med. 2014;38(6):821826. PubMed ID: 25566482 doi:10.5535/arm.2014.38.6.821

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Lee S-H, Son E-S, Seo E-M, Suk K-S, Kim K-T. Factors determining cervical spine sagittal balance in asymptomatic adults: correlation with spinopelvic balance and thoracic inlet alignment. Spine J. 2015;15(4):705712. PubMed ID: 24021619 doi:10.1016/j.spinee.2013.06.059

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Lee S-H, Kim K-T, Seo E-M, Suk K-S, Kwack Y-H, Son E-S. The influence of thoracic inlet alignment on the craniocervical sagittal balance in asymptomatic adults. J Spinal Disord Tech. 2012;25(2):E41E47. PubMed ID: 22037167 doi:10.1097/BSD.0b013e3182396301

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3243 1742 114
Full Text Views 75 44 2
PDF Downloads 105 64 2