Quadriceps Function and Athletic Performance in Highly Trained Female Athletes

Click name to view affiliation

Frederick J. Henderson Osaka University of Health and Sport Sciences, Graduate School of Sport and Exercise Sciences,Kumatori, Japan

Search for other papers by Frederick J. Henderson in
Current site
Google Scholar
PubMed
Close
,
Wakana Sasakabe Osaka University of Health and Sport Sciences, Graduate School of Sport and Exercise Sciences,Kumatori, Japan

Search for other papers by Wakana Sasakabe in
Current site
Google Scholar
PubMed
Close
,
Kuwano Satoshi Osaka University of Health and Sport Sciences, Graduate School of Sport and Exercise Sciences,Kumatori, Japan

Search for other papers by Kuwano Satoshi in
Current site
Google Scholar
PubMed
Close
,
Norihiro Shima Tokai Gakuen University, Department of Sport and Health Science, School of Sport and Health Science, Aichi, Japan

Search for other papers by Norihiro Shima in
Current site
Google Scholar
PubMed
Close
, and
Yohei Shimokochi Osaka University of Health and Sport Sciences, Graduate School of Sport and Exercise Sciences,Kumatori, Japan

Search for other papers by Yohei Shimokochi in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Context: Quadriceps strength is considered a key contributor to performance in various athletic tasks. Yet, past research has reported conflicting results based on population, with little data available in highly trained female athletes. Design: Cross-sectional. Method: To examine how athletic performance relates to quadriceps strength and neural function, we measured the quadriceps maximum voluntary isometric contraction force (MVIC) and rate of force development over 0 to 50 ms (rate of force development [RFD]0−50ms), and various performance measures in 34 highly trained female athletes. Results: Stepwise multiple regression analysis revealed that the quadriceps variables explained 16 of 21 performance variables (R2 = .08–.36, P ≤ .10). Squat performance related to RFD0−50ms alone (R2 = .17–.20, P < .05; βRFD = 0.41 to 0.45, P < .05) but only MVIC explained the variance in sprinting and vertical jump performance (R2 = .08–.34, P ≤ .10; βMVIC = −0.51 to 0.58, P ≤ .10). The broad jump model included both parameters and their interaction (R2 = .20, P = .08; βRFD = 0.06, P = .76; βMVIC = −0.39, P = .03; βRFD×MVIC = −0.24, P = .10). Conclusion: The contribution of the quadriceps MVIC or RFD0–50ms varies in size and nature depending on the task or leg dominance. While quadriceps are significant contributors to performance, because our models leave most of the variance in performance unexplained, rehabilitation and performance professionals should refrain from interpreting peak athletic performance as a reflection of knee-extensors function in highly trained female athletes.

Shimokochi (yshimoko@ouhs.ac.jp) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Sasaki K, Neptune RR. Differences in muscle function during walking and running at the same speed. J Biomech. 2006;39(11):20052013. PubMed ID: 16129444 doi:10.1016/j.jbiomech.2005.06.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24(6):765773. PubMed ID: 8947398 doi:10.1177/036354659602400611

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Cronin JB, Hansen KT. Strength and power predictors of sports speed. J Strength Cond Res. 2005;19(2):349357. PubMed ID: 15903374 doi:10.1519/14323.1

    • Search Google Scholar
    • Export Citation
  • 4.

    Misjuk M, Rannama I, Niglas E. Relationship between lower limb isokinetic strength and 60m sprint running time. Lase J Sport Sci. 2013;4(2):159167.

    • Search Google Scholar
    • Export Citation
  • 5.

    O’Malley E, Richter C, King E, et al. Countermovement jump and isokinetic dynamometry as measures of rehabilitation status after anterior cruciate ligament reconstruction. J Athl Train. 2018;53(7):687695. PubMed ID: 30109947 doi:10.4085/1062-6050-480-16

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Paine R, Chicas E, Bailey L, Hariri T, Lowe W. Strength & functional assessment of healthy high school football players: analysis of skilled and non-skilled positions. Int J Sports Phys Ther. 2015;10(6):850857. PubMed ID: 26618064

    • Search Google Scholar
    • Export Citation
  • 7.

    Webster KE, Feller JA. Return to level I sports after anterior cruciate ligament reconstruction: evaluation of age, sex, and readiness to return criteria. Orthop J Sports Med. 2018;6(8):2325967118788045. doi:10.1177/2325967118788045

    • Search Google Scholar
    • Export Citation
  • 8.

    Angelozzi M, Madama M, Corsica C, et al. Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):772780. PubMed ID: 22814219 doi:10.2519/jospt.2012.3780

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Sonnery-Cottet B, Saithna A, Quelard B, et al. Arthrogenic muscle inhibition after ACL reconstruction: a scoping review of the efficacy of interventions. Br J Sports Med. 2019;53(5):289298. PubMed ID: 30194224 doi:10.1136/bjsports-2017-098401

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Renstrom P, Ljungqvist A, Arendt E, et al. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med. 2008;42(6):394412. PubMed ID: 18539658 doi:10.1136/bjsm.2008.048934

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Behrens M, Mau-Moeller A, Mueller K, et al. Plyometric training improves voluntary activation and strength during isometric, concentric and eccentric contractions. J Sci Med Sport. 2016;19(2):170176. PubMed ID: 25766509 doi:10.1016/j.jsams.2015.01.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Laudner K, Evans D, Wong R, et al. Relationship between isokinetic knee strength and jump characteristics following anterior cruciate ligament reconstruction. Int J Sports Phys Ther. 2015;10(3):272280. PubMed ID: 26075142

    • Search Google Scholar
    • Export Citation
  • 13.

    Alemdaroğlu U. The relationship between muscle strength, anaerobic performance, agility, sprint ability and vertical jump performance in professional basketball players. J Hum Kinet. 2012;31(2012):149158. PubMed ID: 23486566 doi:10.2478/v10078-012-0016-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Coratella G, Beato M, Milanese C, et al. Specific adaptations in performance and muscle architecture after weighted jump-squat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res. 2018;32(4):921929. PubMed ID: 29420390 doi:10.1519/JSC.0000000000002463

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    de Ruiter CJ, Van Leeuwen D, Heijblom A, Bobbert MF, de Haan A. Fast unilateral isometric knee extension torque development and bilateral jump height. Med Sci Sports Exerc. 2006;38(10):18431852. PubMed ID: 17019308 doi:10.1249/01.mss.0000227644.14102.50

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Herman DC, Weinhold PS, Guskiewicz KM, Garrett WE, Yu B, Padua DA. The effects of strength training on the lower extremity biomechanics of female recreational athletes during a stop-jump task. Am J Sports Med. 2008;36(4):733740. PubMed ID: 18212346 doi:10.1177/0363546507311602

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Aagaard P. Training-induced changes in neural function. Exerc Sport Sci Rev. 2003;31(2):6167. PubMed ID: 12715968 doi:10.1097/00003677-200304000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    de Ruiter CJ, Vermeulen G, Toussaint HM, de Haan A. Isometric knee-extensor torque development and jump height in volleyball players. Med Sci Sports Exerc. 2007;39(8):13361346. PubMed ID: 17762367 doi:10.1097/mss.0b013e318063c719

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Häkkinen K. Force production characteristics of leg extensor, trunk flexor and extensor muscles in male and female basketball players. J Sports Med Phys Fitness. 1991;31(3):325331. PubMed ID: 1798300

    • Search Google Scholar
    • Export Citation
  • 20.

    Folland JP, Buckthorpe MW, Hannah R. Human capacity for explosive force production: neural and contractile determinants. Scand J Med Sci Sports. 2014;24(6):894906. PubMed ID: 25754620 doi:10.1111/sms.12131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):10911116. PubMed ID: 26941023 doi:10.1007/s00421-016-3346-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Tillin NA, Pain MTG, Folland J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci. 2013;31(1):6676. PubMed ID: 22938509 doi:10.1080/02640414.2012.720704

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kuenze CM, Hertel J, Hart JM. Quadriceps muscle function after exercise in men and women with a history of anterior cruciate ligament reconstruction. J Athl Train. 2014;49(6):740746. PubMed ID: 25243735 doi:10.4085/1062-6050-49.3.46

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Griffin LY, Albohm MJ, Arendt EA, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):15121532. PubMed ID: 16905673 doi:10.1177/0363546506286866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Howell, B. Statistical methods for psychology. 7th ed. Wadsworth Cengage Learning; 2010.

  • 26.

    Wagner H, Finkenzeller T, Würth S, von Duvillard SP. Individual and team performance in team-handball: a review. J Sports Sci Med. 2014;13(4):808816. PubMed ID: 25435773

    • Search Google Scholar
    • Export Citation
  • 27.

    Miller J. Short report: reaction time analysis with outlier exclusion: bias varies with sample size. Q J Exp Psychol Sect A. 1991;43(4):907912. doi:10.1080/14640749108400962

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Risberg MA, Steffen K, Nilstad A, et al. Normative quadriceps and hamstring muscle strength values for female, healthy, elite handball and football players. J Strength Cond Res. 2018;32(8):23142323. PubMed ID: 29794892 doi:10.1519/JSC.0000000000002579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Clark DR, Lambert MI, Hunter AM. Muscle activation in the loaded free barbell squat: a brief review. J Strength Cond Res. 2012;26(4):11691178. PubMed ID: 22373894 doi:10.1519/JSC.0b013e31822d533d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Turner AN, Jeffreys I. The stretch-shortening cycle: proposed mechanisms and methods for enhancement. Strength Cond J. 2010;32(4):87. doi:10.1519/SSC.0b013e3181e928f9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Liu G, Fekete G, Yang H, et al. Comparative 3-dimensional kinematic analysis of snatch technique between top-elite and sub-elite male weightlifters in 69-kg category. Heliyon. 2018;4(7):e00658. PubMed ID: 30094358 doi:10.1016/j.heliyon.2018.e00658

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2146 641 24
Full Text Views 137 87 1
PDF Downloads 91 27 1