Intersession Variability of Knee Extension Kinetics Using a Strain Gauge Device With Differing Clinically Practical Physical Constraints

Click name to view affiliation

Christopher M. Juneau Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand

Search for other papers by Christopher M. Juneau in
Current site
Google Scholar
PubMed
Close
,
Shelley N. Diewald Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand

Search for other papers by Shelley N. Diewald in
Current site
Google Scholar
PubMed
Close
,
Jonathan Neville Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand

Search for other papers by Jonathan Neville in
Current site
Google Scholar
PubMed
Close
,
John B. Cronin Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand

Search for other papers by John B. Cronin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8889-0911
, and
Dustin J. Oranchuk Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
Acumen Health, Calgary, AB, Canada

Search for other papers by Dustin J. Oranchuk in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4489-9022 *
Restricted access

Context: Intrasession reliabilities of isometric knee extension kinetics via portable strain gauge have been reported across several knee joint angles and constraints. However, intersession variabilities, which are more valuable, have yet to be determined. Therefore, we aimed to quantify the intersession variability of knee extension kinetics over 3 testing sessions using an affordable and portable strain gauge. Design: Participants performed maximum voluntary isometric contractions of the knee extensors over 3 sessions. Methods: Eleven (6 men and 5 women; 31 [6.4] y) volunteers performed maximum voluntary isometric contractions in constrained (isokinetic setup with thigh and chest straps) and unconstrained (treatment plinth) conditions. Peak force (PF), peak rate of force development, rate of force development (RFD), and impulse (IMP) from 20% to 80% of PF were assessed. Means, SDs, percentage changes, minimal detectable changes, coefficients of variation (CV), and intraclass correlation coefficients (ICC) were calculated and reported. Results: PF had the lowest intersession variability regardless of condition (CV = 5.5%–13.8%, ICC = .67–.93). However, variability of peak rate of force development (CV [range] = 12.2%–24.7%, ICC = .50–.78), RFD (CV = 10.0%–26.8%, ICC = .48–.84), and IMP (CV = 15.2%–35.4%, ICC = .44–.88) was moderate at best. The constrained condition (CV [SD] = 14.1% [4.8%], ICC = .74 [.08]) had lower variability compared with the plinth (CV = 19.8% [7.9%], ICC = .68 [.15]). Variability improved from sessions 1 to 2 (CV = 20.4% [7.7%], ICC = .64 [.14]) and to sessions 2 to 3 (CV = 15.3% [6.4%], ICC = .76 [.10]). Conclusions: PF can be assessed regardless of setup. However, RFD and IMP changes across sessions should be approached with caution. Backrests and thigh straps improve RFD and IMP variability, and at least 1 familiarization session should be provided before relying on knee-extensor kinetics while utilizing a portable strain gauge.

  • Collapse
  • Expand
  • 1.

    Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):10911116. doi:10.1007/s00421-016-3346-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Manske R, Reiman M. Functional performance testing for power and return to sports. Sports Health. 2013;5(3):244250. PubMed ID: 24427396 doi:10.1177/1941738113479925

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Cobain DG, Koch CM, Amendola A, Williams GN. Knee extensor rate of torque development before and after arthroscopic partial meniscectomy, with analysis of neuromuscular mechanisms. J Orthop Sports Phys Ther. 2017;47(12):945956. doi:10.2519/jospt.2017.7310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Aagaard P, Magnusson PS, Larsson B, Kjaer M, Krustrup P. Mechanical muscle function, morphology, and fiber type in lifelong trained elderly. Med Sci Sports Exerc. 2007;39(11):19891996. PubMed ID: 17986907 doi:10.1249/mss.0b013e31814fb402

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Clark DJ, Manini TM, Fielding RA, Patten C. Neuromuscular determinants of maximum walking speed in well-functioning older adults. Exp Gerontol. 2013;48(3):358363. PubMed ID: 23376102 doi:10.1016/j.exger.2013.01.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Slawinski J, Bonnefoy A, Leveque J-M, et al. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. J Strength Cond Res. 2010;24(4):896905. PubMed ID: 19935105 doi:10.1519/JSC.0b013e3181ad3448

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Oranchuk DJ, Robinson TL, Switaj ZJ, Drinkwater EJ. Comparison of the hang high-pull and loaded jump squat for the development of vertical jump and isometric force-time characteristics. J Strength Cond Res. 2019;33(1):1724. PubMed ID: 28426514 doi:10.1519/JSC.0000000000001941

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    McMahon G. No strain, no gain? The role of strain and load magnitude in human tendon responses and adaptation to loading. J Strength Cond Res. 2022;36(10):29502956. doi:10.1519/JSC.0000000000004288

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998;513(1):295305. doi:10.1111/j.1469-7793.1998.295by.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Sung K-S, Yi YG, Shin H-I. Reliability and validity of knee extensor strength measurements using a portable dynamometer anchoring system in a supine position. BMC Musculoskelet Disord. 2019;20:320. doi:10.1186/s12891-019-2703-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Karthikbabu S, Chakrapani M. Hand-held dynamometer is a reliable tool to measure trunk muscle strength in chronic stroke. J Clin Diagn Res. 2017;11(9):YC09UC12.

    • Search Google Scholar
    • Export Citation
  • 12.

    Oranchuk DJ, Storey AG, Nelson AR, Neville JG, Cronin JB. Variability of multiangle isometric force-time characteristics in trained men. J Strength Cond Res. 2022;36(1):284288. PubMed ID: 31593034 doi:10.1519/JSC.0000000000003405

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Dontje ML, Dall PM, Skelton DA, Gill JMR, Chastin SM. Reliability, minimal detectable change and responsiveness to change: indicators to select the best method to measure sedentary behaviour in older adults in different study designs. PLoS One. 2018;13(4):e0195424. PubMed ID: 29649234 doi:10.1371/journal.pone.0195424

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bradshaw E, Hume P, Calton M, Aisbett B. Reliability and variability of day-to-day vault training measures in artistic gymnastics. Sports Biomech. 2010;9(2):7997. PubMed ID: 20806844 doi:10.1080/14763141.2010.488298

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bland JM, Altman DG. Statistics notes: measurement error proportional to the mean. Br Med J. 1996;313(7049):106. doi:10.1136/bmj.313.7049.106

    • Search Google Scholar
    • Export Citation
  • 16.

    Oranchuk DJ, Neville JG, Storey AG, Nelson AR, Cronin JB. Variability of concentric angle-specific isokinetic torque and impulse assessments of the knee extensors. Physiol Meas. 2020;41(1):01NT02. doi:10.1088/1361-6579/ab635e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Impellizzeri FM, Bizzini M, Rampinini E, Cereda F, Maffiuletti NA. Reliability of isokinetic strength imbalance ratios measured using the Cybex NORM dynamometer. Clin Physiol Funct Imaging. 2008;28(2):113119. PubMed ID: 18070123 doi:10.1111/j.1475-097X.2007.00786.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Oranchuk DJ, Hopkins WG, Nelson AR, Storey AG, Cronin JB. The effect of regional quadriceps anatomical parameters on angle-specific isometric torque expression. Appl Physiol Nutr Metab. 2021;46(4):368378. PubMed ID: 33058713 doi:10.1139/apnm-2020-0565

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Rodriguez-Rosell D, Pareja-Blanco F, Aagaard P, Gonzalez-Badillo JJ. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin Physiol Funct Imaging. 2018;38(5):743762. PubMed ID: 29266685

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hernandez-Davo JL, Sabido R. Rate of force development: reliability, improvements and influence on performance. A review. Eur J Hum Mov. 2014;33:4669.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1280 729 33
Full Text Views 296 35 0
PDF Downloads 166 14 0