Movement Regularity Differentiates Specialized and Nonspecialized Athletes in a Virtual Reality Soccer Header Task

in Journal of Sport Rehabilitation

Click name to view affiliation

Christopher D. Riehm Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
Emory Sports Medicine Center, Atlanta, GA, USA
Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA

Search for other papers by Christopher D. Riehm in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7396-5055 *
,
Scott Bonnette Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA

Search for other papers by Scott Bonnette in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4002-6286
,
Michael A. Riley Department of Rehabilitation, Exercise, & Nutrition Sciences, University of Cincinnati, Cincinnati, OH, USA

Search for other papers by Michael A. Riley in
Current site
Google Scholar
PubMed
Close
,
Jed A. Diekfuss Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
Emory Sports Medicine Center, Atlanta, GA, USA
Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA

Search for other papers by Jed A. Diekfuss in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3835-363X
,
Christopher A. DiCesare Exponent, Inc., Farmington Hills, MI, USA

Search for other papers by Christopher A. DiCesare in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6576-4904
,
Andrew Schille Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
Emory Sports Medicine Center, Atlanta, GA, USA
Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA

Search for other papers by Andrew Schille in
Current site
Google Scholar
PubMed
Close
,
Adam W. Kiefer Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Search for other papers by Adam W. Kiefer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4213-3349
,
Neeru A. Jayanthi Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
Emory Sports Medicine Center, Atlanta, GA, USA
Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA

Search for other papers by Neeru A. Jayanthi in
Current site
Google Scholar
PubMed
Close
,
Stephanie Kliethermes Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA

Search for other papers by Stephanie Kliethermes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9756-7406
,
Rhodri S. Lloyd Youth Physical Development Centre, School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom

Search for other papers by Rhodri S. Lloyd in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8560-1566
,
Mathew W. Pombo Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
Emory Sports Medicine Center, Atlanta, GA, USA
Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA

Search for other papers by Mathew W. Pombo in
Current site
Google Scholar
PubMed
Close
, and
Gregory D. Myer Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
Emory Sports Medicine Center, Atlanta, GA, USA
Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
The Micheli Center for Sports Injury Prevention, Waltham, MA, USA

Search for other papers by Gregory D. Myer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9983-8422
Restricted access

Background: Young athletes who specialize early in a single sport may subsequently be at increased risk of injury. While heightened injury risk has been theorized to be related to volume or length of exposure to a single sport, the development of unhealthy, homogenous movement patterns, and rigid neuromuscular control strategies may also be indicted. Unfortunately, traditional laboratory assessments have limited capability to expose such deficits due to the simplistic and constrained nature of laboratory measurement techniques and analyses. Methods: To overcome limitations of prior studies, the authors proposed a soccer-specific virtual reality header assessment to characterize the generalized movement regularity of 44 young female athletes relative to their degree of sport specialization (high vs low). Participants also completed a traditional drop vertical jump assessment. Results: During the virtual reality header assessment, significant differences in center of gravity sample entropy (a measure of movement regularity) were present between specialized (center of gravity sample entropy: mean = 0.08, SD = 0.02) and nonspecialized center of gravity sample entropy: mean = 0.10, SD = 0.03) groups. Specifically, specialized athletes exhibited more regular movement patterns during the soccer header than the nonspecialized athletes. However, no significant between-group differences were observed when comparing participants’ center of gravity time series data from the drop vertical jump assessment. Conclusions: This pattern of altered movement strategy indicates that realistic, sport-specific virtual reality assessments may be uniquely beneficial in exposing overly rigid movement patterns of individuals who engage in repeated sport specialized practice.

  • Collapse
  • Expand
  • 1.

    Bell DR, Post EG, Trigsted SM, Hetzel S, McGuine TA, Brooks MA. Prevalence of sport specialization in high school athletics: a 1-year observational study. Am J Sports Med. 2016;44(6):14691474. doi:10.1177/0363546516629943

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Baxter-Jones ADG, Maffulli N. Parental influence on sport participation in elite young athletes. J Sports Med Phys Fitness. 2003;43(2):250255. PubMed ID: 12853909

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Jayanthi N, Kliethermes SA, Côté J. Youth Sport Specialisation: The Need for an Evidence-Based Definition. BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine; 2020.

    • Search Google Scholar
    • Export Citation
  • 4.

    DiFiori JP, Quitiquit C, Gray A, Kimlin EJ, Baker R. Early single sport specialization in a high-achieving us athlete population: comparing National Collegiate Athletic Association student-athletes and undergraduate students. J Athl Train. 2019;54(10):10501054. doi:10.4085/1062-6050-431-18

    • Search Google Scholar
    • Export Citation
  • 5.

    Brenner JS, American Academy of Pediatrics Council on Sports Medicine and Fitness. Overuse injuries, overtraining, and burnout in child and adolescent athletes. Pediatrics. 2007;119(6):12421245. doi:10.1542/peds.2007-0887

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hawkins D, Metheny J. Overuse injuries in youth sports: biomechanical considerations. Med Sci Sports Exerc. 2001;33(10):17011707. doi:10.1097/00005768-200110000-00014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Olsen SJ, Fleisig GS, Dun S, Loftice J, Andrews JR. Risk factors for shoulder and elbow injuries in adolescent baseball pitchers. Am J Sports Med. 2006;34(6):905912. doi:10.1177/0363546505284188

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    DiCesare CA, Montalvo A, Barber Foss KD, et al. Lower extremity biomechanics are altered across maturation in sport-specialized female adolescent athletes. Front Pediatr. 2019;7:268. doi:10.3389/fped.2019.00268

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Jayanthi NA, LaBella CR, Fischer D, Pasulka J, Dugas LR. Sports-specialized intensive training and the risk of injury in young athletes: a clinical case-control study. Am J Sports Med. 2015;43(4):794801. doi:10.1177/0363546514567298

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bartlett R, Wheat J, Robins M. Is movement variability important for sports biomechanists? Sports Biomech. 2007;6(2):224243. doi:10.1080/14763140701322994

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Riley MA, Turvey MT. Variability and determinism in motor behavior. J Mot Behav. 2002;34(2):99125. doi:10.1080/00222890209601934

  • 12.

    Hamill J, Palmer C, Van Emmerik RE. Coordinative variability and overuse injury. Sports Med Arthrosc Rehabil Ther Technol. 2012;4(1):45. doi:10.1186/1758-2555-4-45

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Glazier PS, Wheat JS, Pease DL, Bartlett RM. The interface of biomechanics and motor control. In: Davids K, Bennett S, Newell K, eds. Movement System Variability. Human Kinetics; 2006:4969.

    • Search Google Scholar
    • Export Citation
  • 14.

    Borg FG, Laxåback G. Entropy of balance-some recent results. J Neuroeng Rehabil. 2010;7:38. doi:10.1186/1743-0003-7-38

  • 15.

    Hansen C, Wei Q, Shieh J-S, Fourcade P, Isableu B, Majed L. Sample entropy, univariate, and multivariate multi-scale entropy in comparison with classical postural sway parameters in young healthy adults. Front Hum Neurosci. 2017;11:206. doi:10.3389/fnhum.2017.00206

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Menayo R, Encarnación A, Gea G, Marcos P. Sample entropy-based analysis of differential and traditional training effects on dynamic balance in healthy people. J Mot Behav. 2014;46(2):7382. doi:10.1080/00222895.2013.866932

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ramdani S, Seigle B, Lagarde J, Bouchara F, Bernard PL. On the use of sample entropy to analyze human postural sway data. Med Eng Phys. 2009;31(8):10231031. doi:10.1016/j.medengphy.2009.06.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Perlmutter S, Lin F, Makhsous M. Quantitative analysis of static sitting posture in chronic stroke. Gait Posture. 2010;32(1):5356. doi:10.1016/j.gaitpost.2010.03.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Johnston W, O’Reilly M, Duignan C, et al. Association of dynamic balance with sports-related concussion: a prospective cohort study. Am J sports Med. 2019;47(1):197205. doi:10.1177/0363546518812820

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Quatman-Yates CC, Bonnette MS, Hugentobler JA, et al. Postconcussion postural sway variability changes in youth: the benefit of structural variability analyses. Pediatr Phys Ther. 2015;27(4):316327. doi:10.1097/PEP.0000000000000193

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    McCamley JD, Denton W, Arnold A, Raffalt PC, Yentes JM. On the calculation of sample entropy using continuous and discrete human gait data. Entropy. 2018;20(10):764. doi:10.3390/e20100764

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Silva P, Duarte R, Esteves P, Travassos B, Vilar L. Application of entropy measures to analysis of performance in team sports. Int J Perform Anal Sport. 2016;16(2):753768. doi:10.1080/24748668.2016.11868921

    • Search Google Scholar
    • Export Citation
  • 23.

    Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A. 2001;54(4):11431154. doi:10.1080/713756012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Adams K, Kiefer A, Panchuk D, Hunter A, MacPherson R, Spratford W. From the field of play to the laboratory: recreating the demands of competition with augmented reality simulated sport. J Sports Sci. 2020;38(5):486493. doi:10.1080/02640414.2019.1706872

    • Search Google Scholar
    • Export Citation
  • 25.

    DiCesare C, Kiefer A, Bonnette S, Myer G. Realistic soccer-specific virtual environment exposes high-risk lower extremity biomechanics. J Sport Rehabil. 2019;29(3):294300. doi:10.1123/jsr.2018-0237

    • Search Google Scholar
    • Export Citation
  • 26.

    Diekfuss JA, Bonnette S, Hogg JA, et al. Practical training strategies to apply neuro-mechanistic motor learning principles to facilitate adaptations towards injury-resistant movement in youth. J Sci Sport Exerc. 2021;3(1):316. doi:10.1007/s42978-020-00083-0

    • Search Google Scholar
    • Export Citation
  • 27.

    Bideau B, Multon F, Kulpa R, Fradet L, Arnaldi B, Delamarche P. Using virtual reality to analyze links between handball thrower kinematics and goalkeeper’s reactions. Neurosci Lett. 2004;372(1–2):119122. doi:10.1016/j.neulet.2004.09.023

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kiefer AW, DiCesare C, Bonnette S, et al. Sport-Specific Virtual Reality to Identify Profiles of Anterior Cruciate Ligament Injury Risk During Unanticipated Cutting. IEEE; 2017:18.

    • Search Google Scholar
    • Export Citation
  • 29.

    Gokeler A, Bisschop M, Myer GD, et al. Immersive virtual reality improves movement patterns in patients after ACL reconstruction: implications for enhanced criteria-based return-to-sport rehabilitation. Knee Surg Sports Traumatol Arthrosc. 2016;24(7):22802286. doi:10.1007/s00167-014-3374-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Myer GD, Ford KR, Brent JL, Hewett TE. An integrated approach to change the outcome part I: neuromuscular screening methods to identify high ACL injury risk athletes. J Strength Cond Res. 2012;26(8):2265. doi:10.1519/JSC.0b013e31825c2b8f

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Zahradnik D, Jandacka D, Uchytil J, Farana R, Hamill J. Lower extremity mechanics during landing after a volleyball block as a risk factor for anterior cruciate ligament injury. Phys Ther Sport. 2015;16(1):5358. doi:10.1016/j.ptsp.2014.04.003

    • Search Google Scholar
    • Export Citation
  • 32.

    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):11231130. doi:10.1177/0363546507301585

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Mancini S, Dickin DC, Hankemeier D, Ashton C, Welch J, Wang H. Effects of a soccer-specific vertical jump on lower extremity landing kinematics. Sports Med Health Sci. 2022;4(6):209214. doi:10.1016/j.smhs.2022.07.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kiefer AW, Myer GD. Training the antifragile athlete: a preliminary analysis of neuromuscular training effects on muscle activation dynamics. Nonlinear Dynamics Psychol Life Sci. 2015;19(4):489510. PubMed ID: 26375937

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Stergiou N, Harbourne RT, Cavanaugh JT. Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J Neurol Phys Ther. 2006;30(3):120129. doi:10.1097/01.NPT.0000281949.48193.d9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Grooms DR, Chaudhari A, Page SJ, Nichols-Larsen DS, Onate JA. Visual-motor control of drop landing after anterior cruciate ligament reconstruction. J Athl Train. 2018;53(5):486496. doi:10.4085/1062-6050-178-16

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther. 2015;45(5):381393. doi:10.2519/jospt.2015.5549

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Bonnette S, Diekfuss JA, Grooms DR, et al. Electrocortical dynamics differentiate athletes exhibiting low‐and high‐ACL injury risk biomechanics. Psychophysiology. 2020;57(4):e13530. doi:10.1111/psyp.13530

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    McPherson AL, Nagai T, Webster KE, Hewett TE. Musculoskeletal injury risk after sport-related concussion: a systematic review and meta-analysis. Am J Sports Med. 2019;47(7):17541762. doi:10.1177/0363546518785901

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Van Emmerik RE, Ducharme SW, Amado AC, Hamill J. Comparing dynamical systems concepts and techniques for biomechanical analysis. J Sport Health Sci. 2016;5(1):313. doi:10.1016/j.jshs.2016.01.013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Miller LE, Pinkerton EK, Fabian KC, et al. Characterizing head impact exposure in youth female soccer with a custom-instrumented mouthpiece. Res Sports Med. 2020;28(1):5571. doi:10.1080/15438627.2019.1590833

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1092 898 51
Full Text Views 232 230 1
PDF Downloads 228 224 1