The Effects of Vibration Exposure on Lower-Limb Extensor Muscles’ Stiffness, Elasticity, and Strength Responses in Untrained Young Individuals: A Randomized Controlled Trial

in Journal of Sport Rehabilitation

Click name to view affiliation

Filiz BaşolDepartment of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Okan University, Istanbul, Turkey

Search for other papers by Filiz Başol in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1505-1455
,
İlke KaraDepartment of Physical Therapy and Rehabilitation, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey

Search for other papers by İlke Kara in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4974-533X
, and
Tülay Çevik SaldıranDepartment of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bitlis Eren University, Bitlis, Turkey

Search for other papers by Tülay Çevik Saldıran in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4048-1251*
Restricted access

Objectives: The whole-body vibration (WBV) effects on muscle strength show inconsistent results. Moreover, there is no study about the WBV effect on stiffness, elasticity, and muscle strength. Therefore, the study aimed to examine the effect of WBV exposure with static squat posture on the stiffness, elasticity, and strength of the lower-limb extensor muscles. Material and Methods: Forty healthy untrained young adults were divided into WBV and control groups. The experimental group received WBV exposure on 2 nonconsecutive days of the week, for 6 weeks. The MyotonPRO device was used for the assessment of the knee extensor and the ankle dorsiflexors’ stiffness and elasticity. Isometric muscle strength was evaluated with a hand-held dynamometer. All measurements were done by the same assessor at baseline, and the following 6 weeks. Results: Significant group-by-time interactions were found for the elasticity scores of the right (d = 0.84, P = .01) and left (d = 0.77, P = .02) ankle dorsiflexors. Similar to the elasticity measurements, significant group-by-time interactions were observed in the muscle strength scores of the right (d = 0.45, P = .046) and left (d = 1.25, P < .001) ankle dorsiflexors. No significant effects were observed in any of the evaluated muscle stiffness measurements (P > .05), and there was no significant group-by-time interaction in knee-extensor muscle strength and elasticity scores (P > .05). Conclusions: The study results indicate that if the ankle dorsiflexor strength and elasticity are desired to be increased, the 6-week WBV exposure in a static squat posture can be used in healthy individuals.

  • Collapse
  • Expand
  • 1.

    Cardinale M, Wakeling J. Whole body vibration exercise: are vibrations good for you? Br J Sports Med. 2005;39(9):585589. PubMed ID: 16118292 doi:10.1136/bjsm.2005.016857

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Oliveira MP, Menzel H, Cochrane DJ, et al. Individual responses to different vibration frequencies identified by electromyography and dynamometry in different types of vibration application. J Strength Cond Res. 2021;35(6):17481759. PubMed ID: 30844986 doi:10.1519/jsc.0000000000002985

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Fowler BD, Palombo KT, Feland JB, Blotter JD. Effects of whole-body vibration on flexibility and stiffness: a literature review. Int J Exerc Sci. 2019;12(3):735747. PubMed ID: 31156749

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pollock RD, Woledge RC, Martin FC, Newham DJ. The effects of whole body vibration on motor unit recruitment and threshold. J Appl Physiol. 2012;112(3):388395. PubMed ID: 22096119 doi:10.1152/japplphysiol.01223.2010

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Park S-Y, Son W-M, Kwon O-S. Effects of whole body vibration training on body composition, skeletal muscle strength, and cardiovascular health. J Exerc Rehabil. 2015;11(6):289295. PubMed ID: 26730378 doi:10.12965/jer.150254

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Pollock RD, Woledge RC, Mills KR, Martin FC, Newham DJ. Muscle activity and acceleration during whole body vibration: effect of frequency and amplitude. Clin Biomech. 2010;25(8):840846. doi:10.1016/j.clinbiomech.2010.05.004

    • Search Google Scholar
    • Export Citation
  • 7.

    Abercromby AF, Amonette WE, Layne CS, Mcfarlin BK, Hinman MR, Paloski WH. Variation in neuromuscular responses during acute whole-body vibration exercise. Med Sci Sports Exerc. 2007;39(9):16421650. PubMed ID: 17805098 doi:10.1249/mss.0b013e318093f551

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Petit P-D, Pensini M, Tessaro J, Desnuelle C, Legros P, Colson SS. Optimal whole-body vibration settings for muscle strength and power enhancement in human knee extensors. J Electromyogr Kinesiol. 2010;20(6):11861195. PubMed ID: 20801671 doi:10.1016/j.jelekin.2010.08.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Spain L, Yang L, Wilkinson JM, McCloskey E. Transmission of whole body vibration—comparison of three vibration platforms in healthy subjects. Bone. 2021;144:115802. PubMed ID: 33309990 doi:10.1016/j.bone.2020.115802

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Centner C, Ritzmann R, Gollhofer A, König D. Effects of whole-body vibration training and blood flow restriction on muscle adaptations in women: a randomized controlled trial. J Strength Cond Res. 2020;34(3):603608. PubMed ID: 31842133 doi:10.1519/JSC.0000000000003401

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Roschel H, Barroso R, Tricoli V, et al. Effects of strength training associated with whole-body vibration training on running economy and vertical stiffness. J Strength Cond Res. 2015;29(8):22152220. PubMed ID: 25627640 doi:10.1519/JSC.0000000000000857

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Avelar NC, Ribeiro VG, Mezêncio B, et al. Influence of the knee flexion on muscle activation and transmissibility during whole body vibration. J Electromyogr Kinesiol. 2013;23(4):844850. PubMed ID: 23643467 doi:10.1016/j.jelekin.2013.03.014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ritzmann R, Gollhofer A, Kramer A. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur J Appl Physiol. 2013;113(1):111. PubMed ID: 22538279 doi:10.1007/s00421-012-2402-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Roelants M, Delecluse C, Verschueren SM. Whole‐body‐vibration training increases knee‐extension strength and speed of movement in older women. J Am Geriatr Soc. 2004;52(6):901908. PubMed ID: 15161453 doi:10.1111/j.1532-5415.2004.52256.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Saldıran , Atıcı E, Rezaei DA, et al. The acute effects of different intensity whole-body vibration exposure on muscle tone and strength of the lower legs, and hamstring flexibility: a pilot study. J Sport Rehabil. 2020;30(2):235241. PubMed ID: 32473582 doi:10.1123/jsr.2019-0408

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Osawa Y, Oguma Y, Ishii N. The effects of whole-body vibration on muscle strength and power: a meta-analysis. J Musculoskelet Neuronal Interact. 2013;13(3):380390. PubMed ID: 23989260

    • Search Google Scholar
    • Export Citation
  • 17.

    Escamilla RF. Knee biomechanics of the dynamic squat exercise. Med Sci Sports Exerc. 2001;33(1):127141. PubMed ID: 11194098 doi:10.1097/00005768-200101000-00020

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Robertson D, Wilson J-MJ, Pierre TAS. Lower extremity muscle functions during full squats. J Appl Biomech. 2008;24(4):333339. PubMed ID: 19075302 doi:10.1123/jab.24.4.333

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Marín PJ, Rhea MR. Effects of vibration training on muscle power: a meta-analysis. J Strength Cond Res. 2010;24(3):871878. PubMed ID: 20145554 doi:10.1519/JSC.0b013e3181c7c6f0

    • Search Google Scholar
    • Export Citation
  • 20.

    Bizzini M, Mannion AF. Reliability of a new, hand-held device for assessing skeletal muscle stiffness. Clin Biomech. 2003;18(5):459461. doi:10.1016/S0268-0033(03)00042-1

    • Search Google Scholar
    • Export Citation
  • 21.

    Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An K-N. Validation of shear wave elastography in skeletal muscle. J Biomech. 2013;46(14):23812387. PubMed ID: 23953670 doi:10.1016/j.jbiomech.2013.07.033

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Aird L, Samuel D, Stokes M. Quadriceps muscle tone, elasticity and stiffness in older males: reliability and symmetry using the MyotonPRO. Arch Gerontol Geriatr. 2012;55(2):e31e39. PubMed ID: 22503549 doi:10.1016/j.archger.2012.03.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Şendur HN, Cindil E, Cerit MN, Kılıç P, Gültekin , Oktar . Evaluation of effects of aging on skeletal muscle elasticity using shear wave elastography. Eur J Radiol. 2020;128:109038. PubMed ID: 32422550 doi:10.1016/j.ejrad.2020.109038

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    McGowen JM, Hoppes CW, Forsse JS, Albin SR, Abt J, Koppenhaver SL. The utility of myotonometry in musculoskeletal rehabilitation and human performance programming. J Athl Train. Published online July 14, 2022. doi:10.4085/1062-6050-0616.21

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Mullix J, Warner M, Stokes M. Testing muscle tone and mechanical properties of rectus femoris and biceps femoris using a novel hand held MyotonPRO device: relative ratios and reliability. Working Papers in Health Sciences. 2012;1(1):18.

    • Search Google Scholar
    • Export Citation
  • 26.

    Colson S, Petit P-D. Lower limbs power and stiffness after whole-body vibration. Int J Sports Med. 2013;34(04):318323. doi:10.1055/s-0032-1311596

  • 27.

    Cronin JB, Oliver M, McNair PJ. Muscle stiffness and injury effects of whole body vibration. Phys Ther Sport. 2004;5(2):6874. doi:10.1016/S1466-853X(04)00020-3

    • Search Google Scholar
    • Export Citation
  • 28.

    Han S-W, Lee D-Y, Choi D-S, Han B, Kim J-S, Lee H-D. Asynchronous alterations of muscle force and tendon stiffness following 8 weeks of resistance exercise with whole-body vibration in older women. J Aging Phys Act. 2017;25(2):287294. PubMed ID: 27768508 doi:10.1123/japa.2016-0149

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rieder F, Wiesinger HP, Kösters A, Müller E, Seynnes OR. Whole‐body vibration training induces hypertrophy of the human patellar tendon. Scand J Med Sci Sports. 2016;26(8):902910. PubMed ID: 26173589 doi:10.1111/sms.12522

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Siu PM, Tam BT, Chow DH, et al. Immediate effects of 2 different whole-body vibration frequencies on muscle peak torque and stiffness. Arch Phys Med Rehabil. 2010;91(10):16081615. PubMed ID: 20875522 doi:10.1016/j.apmr.2010.07.214

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Brauck K, Galbán CJ, Maderwald S, Herrmann BL, Ladd ME. Changes in calf muscle elasticity in hypogonadal males before and after testosterone substitution as monitored by magnetic resonance elastography. Eur J Endocrinol. 2007;156(6):673678. PubMed ID: 17535867 doi:10.1530/EJE-06-0694

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Muckelt PE, Warner MB, Cheliotis-James T, et al. Protocol and reference values for minimal detectable change of MyotonPRO and ultrasound imaging measurements of muscle and subcutaneous tissue. Sci Rep. 2022;12(1):111. doi:10.1038/s41598-022-17507-2

    • Search Google Scholar
    • Export Citation
  • 33.

    Kalkhoven JT, Watsford ML. The relationship between mechanical stiffness and athletic performance markers in sub-elite footballers. J Sports Sci. 2018;36(9):10221029. PubMed ID: 28697691 doi:10.1080/02640414.2017.1349921

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Pruyn EC, Watsford ML, Murphy AJ. Validity and reliability of three methods of stiffness assessment. J Sport Health Sci. 2016;5(4):476483. PubMed ID: 30356566 doi:10.1016/j.jshs.2015.12.001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Mileva KN, Bowtell JL, Kossev AR. Effects of low‐frequency whole‐body vibration on motor‐evoked potentials in healthy men. Exp Physiol. 2009;94(1):103116. PubMed ID: 18658234 doi:10.1113/expphysiol.2008.042689

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Delecluse C, Roelants M, Verschueren S. Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc. 2003;35(6):10331041. PubMed ID: 12783053 doi:10.1249/01.MSS.0000069752.96438.B0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kvorning T, Bagger M, Caserotti P, Madsen K. Effects of vibration and resistance training on neuromuscular and hormonal measures. Eur J Appl Physiol. 2006;96(5):615625. PubMed ID: 16482475 doi:10.1007/s00421-006-0139-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Osawa Y, Oguma Y, Onishi S. Effects of whole-body vibration training on bone-free lean body mass and muscle strength in young adults. J Sports Sci Med. 2011;10(1):97104. PubMed ID: 24149301

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Rauch F, Sievanen H, Boonen S, et al. Reporting whole-body vibration intervention studies: recommendations of the international society of musculoskeletal and neuronal interactions. J Musculoskelet Neuronal Interact. 2010; 10(3):193198. PubMed ID: 20811143

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Feng Y, Li Y, Liu C, Zhang Z. Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci Rep. 2018;8(1):19. doi:10.1038/s41598-018-34719-7

    • Search Google Scholar
    • Export Citation
  • 41.

    Mentiplay BF, Perraton LG, Bower KJ, et al. Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: a reliability and validity study. PLoS One. 2015;10(10):e0140822. PubMed ID: 26509265 doi:10.1371/journal.pone.0140822

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Stegeman D, Hermens H. Standards for surface electromyography: the European project “surface EMG for non-invasive assessment of muscles (SENIAM).” Enschede: Roessingh Research and Development. 2007;10:812.

    • Search Google Scholar
    • Export Citation
  • 43.

    Olejnik S, Algina J. Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychol Methods. 2003;8(4):434. PubMed ID: 14664681 doi:10.1037/1082-989X.8.4.434

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Eriksson Crommert M, Lacourpaille L, Heales L, Tucker K, Hug F. Massage induces an immediate, albeit short‐term, reduction in muscle stiffness. Scand J Med Sci Sports. 2015;25(5):e490e496. PubMed ID: 25487283 doi:10.1111/sms.12341

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Pruyn EC, Watsford ML, Murphy AJ. Differences in lower-body stiffness between levels of netball competition. J Strength Cond Res. 2015;29(5):11971202. PubMed ID: 24531435 doi:10.1519/JSC.0000000000000418

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Pickering Rodriguez EC, Watsford ML, Bower RG, Murphy AJ. The relationship between lower body stiffness and injury incidence in female netballers. Sports Biomech. 2017;16(3):361373. PubMed ID: 28553879 doi:10.1080/14763141.2017.1319970

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Jiménez-Sánchez C, Ortiz-Lucas M, Bravo-Esteban E, Mayoral-del Moral O, Herrero-Gállego P, Gómez-Soriano J. Myotonometry as a measure to detect myofascial trigger points: an inter-rater reliability study. Physiol Meas. 2018;39(11):115004. PubMed ID: 30475742 doi:10.1088/1361-6579/aae9aa

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Albin S, Koppenhaver S, MacDonald C, et al. The effect of dry needling on gastrocnemius muscle stiffness and strength in participants with latent trigger points. J Electromyogr Kinesiol. 2020;55:102479. PubMed ID: 33075711 doi:10.1016/j.jelekin.2020.102479

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Kong PW, Chua YH, Kawabata M, Burns SF, Cai C. Effect of post-exercise massage on passive muscle stiffness measured using myotonometry—a double-blind study. J Sports Sci Med. 2018;17(4):599. PubMed ID: 30479528

    • Search Google Scholar
    • Export Citation
  • 50.

    Albin SR, Koppenhaver SL, Bailey B, et al. The effect of manual therapy on gastrocnemius muscle stiffness in healthy individuals. Foot. 2019;38:7075. PubMed ID: 30665198 doi:10.1016/j.foot.2019.01.006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Agyapong-Badu S, Warner M, Samuel D, Stokes M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch Gerontol Geriatr. 2016;62:5967. PubMed ID: 26476868 doi:10.1016/j.archger.2015.09.011

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Gubler-Hanna C, Laskin J, Marx BJ, Leonard CT. Construct validity of myotonometric measurements of muscle compliance as a measure of strength. Physiol Meas. 2007;28(8):913. PubMed ID: 17664682 doi:10.1088/0967-3334/28/8/013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Bouillard K, Nordez A, Hug F. Estimation of individual muscle force using elastography. PLoS One. 2011;6(12):e29261. PubMed ID: 22229057 doi:10.1371/journal.pone.0029261

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Wang AB, Perreault EJ, Royston TJ, Lee SSM. Changes in shear wave propagation within skeletal muscle during active and passive force generation. J Biomech. 2019;94:115122. PubMed ID: 31376979 doi:10.1016/j.jbiomech.2019.07.019

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Alamäki A, Häkkinen A, Mälkiä E, Ylinen J. Muscle tone in different joint positions and at submaximal isometric torque levels. Physiol Meas. 2007;28(8):793. PubMed ID: 17664672 doi:10.1088/0967-3334/28/8/003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Colson SS, Pensini M, Espinosa J, Garrandes F, Legros P. Whole-body vibration training effects on the physical performance of basketball players. J Strength Cond Res. 2010;24(4):9991006. PubMed ID: 20300027 doi:10.1519/JSC.0b013e3181c7bf10

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Wyon M, Guinan D, Hawkey A. Whole-body vibration training increases vertical jump height in a dance population. J Strength Cond Res. 2010;24(3):866870. PubMed ID: 20145555 doi:10.1519/JSC.0b013e3181c7c640

    • Search Google Scholar
    • Export Citation
  • 58.

    De Ruiter C, Van Der Linden R, Van der Zijden M, Hollander A, De Haan A. Short-term effects of whole-body vibration on maximal voluntary isometric knee extensor force and rate of force rise. Eur J Appl Physiol. 2003;88(4):472475. doi:10.1007/s00421-002-0723-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    De Ruiter C, Van Raak S, Schilperoort J, Hollander A, De Haan A. The effects of 11 weeks whole body vibration training on jump height, contractile properties and activation of human knee extensors. Eur J Appl Physiol. 2003;90(5–6):595600. PubMed ID: 12923646 doi:10.1007/s00421-003-0931-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Munera M, Bertucci W, Duc S, Chiementin X. Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises. Sports Biomech. 2016;15(4):409428. PubMed ID: 27238625 doi:10.1080/14763141.2016.1171894

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 491 491 30
Full Text Views 199 199 97
PDF Downloads 176 176 90