Intrinsic Foot Muscle Exercises With and Without Electric Stimulation

in Journal of Sport Rehabilitation

Click name to view affiliation

Katherine R. Newsham Department of Physical Therapy & Athletic Training, Saint Louis University, St Louis, MO, USA

Search for other papers by Katherine R. Newsham in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3695-0767 *
Restricted access

Context: Exercising intrinsic foot muscles (IFMs) can improve dynamic balance and foot posture. The exercises are not intuitive and electrotherapy (neuromuscular electrical stimulation [NMES]) has been suggested to help individuals execute the exercises. The aim of this study was to evaluate the effects of training IFM program on dynamic balance and foot posture and compare traditional training methods (TRAIN) with traditional training plus NMES on the perceived workload of the exercises, balance, and foot posture. Design: Randomized controlled trial. Methods: Thirty-nine participants were randomized to control, TRAIN, or NMES. TRAIN and NMES performed IFM exercises daily for 4 weeks; NMES received electrotherapy during the first 2 weeks of training. The Y-Balance test and arch height index were measured in all participants at baseline. The training groups were measured again at 2 weeks; all participants were measured at 4 weeks and 8 weeks, after 4 weeks of no training. Perceived workload (National Aeronautics and Space Administration Task Load Index) of exercises was assessed throughout the first 2 weeks and at 4 weeks. Results: A 4-week IFM training program demonstrated increases in Y-Balance (P = .01) for TRAIN and in arch height index (seated P = .03; standing P = .02) for NMES, relative to baseline. NMES demonstrated improvement in Y-Balance (P = .02) and arch height index standing (P = .01) at 2 weeks. There were no significant differences between the training groups. Groups were similar in the number responding to exercises in excess of minimal detectable change on all clinical measures. Perceived workload of the exercises decreased during the first 2 weeks of training (P = .02), and more notably at 4 weeks (P < .001). The groups did not differ in how they perceived the workload. Conclusions: A 4-week IFM training program improved dynamic balance and foot posture. Adding NMES in early phases of training provided early improvement in dynamic balance and foot posture, but did not affect perceived workload.

A 4-week intrinsic foot muscles (IFMs) training program can improve foot posture and global postural stability in individuals with IFM dysfunction.

Application of neuromuscular electrical stimulation (NMES) does not affect participants’ perception of the workload associated with IFM exercises.

NMES provides early and important increases in arch height index.

Supplementary Materials

    • Supplementary Figure S1 (PDF 189 KB)
  • Collapse
  • Expand
  • 1.

    McKeon PO, Fourchet F. Freeing the foot: integrating the foot core system into rehabilitation for lower extremity injuries. Clin Sports Med. 2015;34(2):347361. doi:10.1016/j.csm.2014.12.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    McKeon PO, Hertel J, Bramble D, Davis I. The foot core system: a new paradigm for understanding intrinsic foot muscle function. Br J Sports Med. 2015;49(5):290. doi:10.1136/bjsports-2013-092690

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Headlee DL, Leonard JL, Hart JM, Ingersoll CD, Hertel J. Fatigue of the plantar intrinsic foot muscles increases navicular drop. J Electromyogr Kinesiol. 2008;18(3):420425. doi:10.1016/j.jelekin.2006.11.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Fiolkowski P, Brunt D, Bishop M, Woo R, Horodyski M. Intrinsic pedal musculature support of the medial longitudinal arch: an electromyography study. J Foot Ankle Surg. 2003;42(6):327333. doi:10.1053/j.jfas.2003.10.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kelly LA, Cresswell AG, Racinais S, Whiteley R, Lichtwark G. Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch. J R Soc Interface. 2014;11(93):20131188. doi:10.1098/rsif.2013.1188

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Okamura K, Kanai S, Fukuda K, Tanaka S, Ono T, Oki S. The effect of additional activation of the plantar intrinsic foot muscles on foot kinematics in flat-footed subjects. Foot. 2019;38:1923. doi:10.1016/j.foot.2018.11.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Angin S, Crofts G, Mickle KJ, Nester CJ. Ultrasound evaluation of foot muscles and plantar fascia in pes planus. Gait Posture. 2014;40(1):4852. doi:10.1016/j.gaitpost.2014.02.008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cheung RT, Sze LK, Mok NW, Ng GY. Intrinsic foot muscle volume in experienced runners with and without chronic plantar fasciitis. J Sci Med Sport. 2016;19(9):713715. doi:10.1016/j.jsams.2015.11.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Zhang X, Schütte KH, Vanwanseele B. Foot muscle morphology is related to center of pressure sway and control mechanisms during single-leg standing. Gait Posture. 2017;57:5256. doi:10.1016/j.gaitpost.2017.05.027

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Namsawang J, Eungpinichpong W, Vichiansiri R, Rattanathongkom S. Effects of the short foot exercise with neuromuscular electrical stimulation on navicular height in flexible flatfoot in Thailand: a randomized controlled trial. J Prev Med Public Health. 2019;52(4):250257. doi:10.3961/jpmph.19.072

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Unver B, Erdem EU, Akbas E. Effects of short-foot exercises on foot posture, pain, disability, and plantar pressure in pes planus. J Sport Rehabil. 2020;29(4):436440. doi:10.1123/jsr.2018-0363

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sulowska I, Oleksy Ł, Mika A, Bylina D, Sołtan J. The influence of plantar short foot muscle exercises on foot posture and fundamental movement patterns in long-distance runners, a non-randomized, non-blinded clinical trial. PLoS One. 2016;11(6):e0157917. doi:10.1371/journal.pone.0157917

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Okamura K, Fukuda K, Oki S, Ono T, Tanaka S, Kanai S. Effects of plantar intrinsic foot muscle strengthening exercise on static and dynamic foot kinematics: a pilot randomized controlled single-blind trial in individuals with pes planus. Gait Posture. 2020;75:4045. doi:10.1016/j.gaitpost.2019.09.030

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lynn SK, Padilla RA, Tsang KK. Differences in static- and dynamic-balance task performance after 4 weeks of intrinsic-foot-muscle training: the short-foot exercise versus the towel-curl exercise. J Sport Rehabil. 2012;21(4):327333. doi:10.1123/jsr.21.4.327

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kim EK, Kim JS. The effects of short foot exercises and arch support insoles on improvement in the medial longitudinal arch and dynamic balance of flexible flatfoot patients. J Phys Ther Sci. 2016;28:31363139. doi:10.1589/jpts.28.3136

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mulligan EP, Cook PG. Effect of plantar intrinsic muscle training on medial longitudinal arch morphology and dynamic function. Man Ther. 2013;18(5):425430. doi:10.1016/j.math.2013.02.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Taddei UT, Matias AB, Ribeiro FIA, Bus SA, Sacco ICN. Effects of a foot strengthening program on foot muscle morphology and running mechanics: a proof-of-concept, single-blind randomized controlled trial. Phys Ther Sport. 2020;42:107115. doi:10.1016/j.ptsp.2020.01.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gooding TM, Feger MA, Hart JM, Hertel J. Intrinsic foot muscle activation during specific exercises: a T2 time magnetic resonance imaging study. J Athl Train. 2016;51(8):644650. doi:10.4085/1062-6050-51.10.07

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Okamura K, Kanai S, Hasegawa M, Otsuka A, Oki S. Effect of electromyographic biofeedback on learning the short foot exercise. J Back Musculoskelet Rehabil. 2019;32(5):685691. doi:10.3233/bmr-181155

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Okamura K, Egawa K, Okii A, Oki S, Kanai S. Intrinsic foot muscle strengthening exercises with electromyographic biofeedback achieve increased toe flexor strength in older adults: a pilot randomized controlled trial. Clin Biomech. 2020;80:105187. doi:10.1016/j.clinbiomech.2020.105187

    • Search Google Scholar
    • Export Citation
  • 21.

    Newsham KR. Strengthening the intrinsic foot muscles. Athletic Therapy Today. 2010;15(1):3235. doi:10.1123/att.15.1.32

  • 22.

    Janda VM, Herbenova A, Veverkova M. Sensory motor stimulation. In: Liebenson C, ed. Rehabilitation of the Spine: A Practitioner’s Manual. 2nd ed. Williams and Wilkins; 2007:513530.

    • Search Google Scholar
    • Export Citation
  • 23.

    Fourchet FK, Leopelt H, Miller GP. Plantar muscles electro-stimulation and navicular drop. Sci Sports. 2009;24(5):262264. doi:10.1016/j.scispo.2009.03.005

    • Search Google Scholar
    • Export Citation
  • 24.

    Fraser JJ, Hertel J. Effects of a 4-week intrinsic foot muscle exercise program on motor function: a preliminary randomized control trial. J Sport Rehabil. 2019;28(4):339349. doi:10.1123/jsr.2017-0150

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hart SG. Nasa-Task Load Index (NASA-TLX); 20 years later. Proc Hum Factors Ergon Soc Annu Meet. 2006;50(9):904908. doi:10.1177/154193120605000909

    • Search Google Scholar
    • Export Citation
  • 26.

    Caldwell LK, Laubach LL, Barrios JA. Effect of specific gait modifications on medial knee loading, metabolic cost and perception of task difficulty. Clin Biomech. 2013;28(6):649654. doi:10.1016/j.clinbiomech.2013.05.012

    • Search Google Scholar
    • Export Citation
  • 27.

    Garth WP Jr, Miller ST. Evaluation of claw toe deformity, weakness of the foot intrinsics, and posteromedial shin pain. Am J Sports Med. 1989;17(6):821827. doi:10.1177/036354658901700617

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Williams DS, McClay IS. Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity. Phys Ther. 2000;80(9):864871.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Plisky PJ, Gorman PP, Butler RJ, Kiesel KB, Underwood FB, Elkins B. The reliability of an instrumented device for measuring components of the star excursion balance test. N Am J Sports Phys Ther. 2009;4(2):9299.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Chen S, Wolf SL, Zhang Q, Thompson PA, Winstein CJ. Minimal detectable change of the actual amount of use test and the motor activity log: the EXCITE Trial. Neurorehabil Neural Repair. 2012;26(5):507514. doi:10.1177/1545968311425048

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lee DR, Choi YE. Effects of a 6-week intrinsic foot muscle exercise program on the functions of intrinsic foot muscle and dynamic balance in patients with chronic ankle instability. J Exerc Rehabil. 2019;15(5):709714. doi:10.12965/jer.1938488.244

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Butler RJ, Lehr ME, Fink ML, Kiesel KB, Plisky PJ. Dynamic balance performance and noncontact lower extremity injury in college football players: an initial study. Sports Health. 2013;5(5):417422. doi:10.1177/1941738113498703

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110(2):223234. doi:10.1007/s00421-010-1502-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Knellwolf TP, Burton AR, Hammam E, Macefield VG. Firing properties of muscle spindles supplying the intrinsic foot muscles of humans in unloaded and freestanding conditions. J Neurophysiol. 2019;121(1):7484. doi:10.1152/jn.00539.2018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Fourchet F, Kuitunen S, Girard O, Beard AJ, Millet GP. Effects of combined foot/ankle electromyostimulation and resistance training on the in-shoe plantar pressure patterns during sprint in young athletes. J Sports Sci Med. 2011;10(2):292300.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Taddei UT, Matias AB, Duarte M, Sacco ICN. Foot core training to prevent running-related injuries: a survival analysis of a single-blind, randomized controlled trial. Am J Sports Med. 2020;48(14):36103619. doi:10.1177/0363546520969205

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Newsham KR. Exploring workload associated with learning foot core exercises. Int J Athl Ther Train. 2021;27(3):120128. doi:10.1123/ijatt.2020-0134

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 839 839 152
Full Text Views 34 35 4
PDF Downloads 44 44 4