Effect of Bridge Exercise Duration on Lateral Abdominal Muscle Thickness and Gluteus Maximus Activation

Click name to view affiliation

Eleftherios Kellis Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece

Search for other papers by Eleftherios Kellis in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8179-6340 *
,
Athanasios Konstantopoulos Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece

Search for other papers by Athanasios Konstantopoulos in
Current site
Google Scholar
PubMed
Close
, and
Athanasios Ellinoudis Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece

Search for other papers by Athanasios Ellinoudis in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Bridge exercises are extensively used in trunk-strengthening programs. The aim of this study was to investigate the effect of bridging duration on lateral abdominal muscle thickness and gluteus maximus activation. Design: Cross-sectional. Methods: Twenty-five young males participated in this study. Transversus abdominal (TrA), external and internal oblique ultrasound thickness, gluteus maximus electromyographic activation, and sacral tilt angle were simultaneously measured for every second during 30-second bridging exercise. The contraction thickness ratio and root mean squared signal (normalized to maximum isometric contraction signal) during 6 exercise durations (from 0 to 5, 10, 15, 20, 25, and 30 s) were also calculated and compared using analysis of variance designs. Results: TrA and internal oblique contraction thickness ratio and gluteus maximus root mean squared increased during the first 8 to 10 seconds and remained elevated until the end of the 30-second exercise (P < .05). External oblique contraction thickness ratio declined during exercise (P < .05). Five-second bridging showed less TrA thickness and anteroposterior and mediolateral sacral tilt angle and a lower anteroposterior tilt variability compared with bridges, which lasted more than 10 seconds (P < .05). Conclusions: Bridge exercises longer than 10 seconds may be better for promoting TrA recruitment than bridges of shorter duration. Clinicians and exercise specialists could adjust the duration of bridge exercise based on the aims of the exercise program.

  • Collapse
  • Expand
  • 1.

    Ekstrom RA, Donatelli RA, Carp KC. Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. J Orthop Sports Phys Ther. 2007;37(12):754762. doi:10.2519/jospt.2007.2471

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Youdas JW, Hartman JP, Murphy BA, Rundle AM, Ugorowski JM, Hollman JH. Magnitudes of muscle activation of spine stabilizers, gluteals, and hamstrings during supine bridge to neutral position. Physiother Theory Pract. 2015;31(6):418427. doi:10.3109/09593985.2015.1010672

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Macadam P, Feser EH. Examination of gluteus maximus electromyographic excitation associated with dynamic hip extension during body weight exercise: a systematic review. Int J Sports Phys Ther. 2019;14(1):1431. doi:10.26603/ijspt20190014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hollman JH, Berling TA, Crum EO, Miller KM, Simmons BT, Youdas JW. Do verbal and tactile cueing selectively alter gluteus maximus and hamstring recruitment during a supine bridging exercise in active females? A randomized controlled trial. J Sport Rehabil. 2018;27(2):138143. doi:10.1123/jsr.2016-0130

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ho IMK, Ng LPC, Lee KL, Luk TCJ. Effects of knee flexion angles in supine bridge exercise on trunk and pelvic muscle activity. Res Sports Med. 2020;28(4):484497. doi:10.1080/15438627.2020.1777552

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bjerkefors A, Ekblom MM, Josefsson K, Thorstensson A. Deep and superficial abdominal muscle activation during trunk stabilization exercises with and without instruction to hollow. Man Ther. 2010;15(5):502507. doi:10.1016/j.math.2010.05.006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Feldwieser FM, Sheeran L, Meana-Esteban A, Sparkes V. Electromyographic analysis of trunk-muscle activity during stable, unstable and unilateral bridging exercises in healthy individuals. Eur Spin J. 2012;21(suppl 2):171186. doi:10.1007/s00586-012-2254-7

    • Search Google Scholar
    • Export Citation
  • 8.

    Kang HK, Jung JH, Yu JH. Comparison of trunk muscle activity during bridging exercises using a sling in patients with low back pain. J Sport Sci Med. 2012;11(3):510555.

    • Search Google Scholar
    • Export Citation
  • 9.

    Akuthota V, Ferreiro A, Moore T, Fredericson M. Core stability exercise principles. Curr Sports Med Rep. 2008;7(1):3944. doi:10.1097/01.CSMR.0000308663.13278.69

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mueller J, Niederer D. Dose–response-relationship of stabilisation exercises in patients with chronic non-specific low back pain: a systematic review with meta-regression. Sci Rep. 2020;10(1):16921. doi:10.1038/s41598-020-73954-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Huxel Bliven KC, Anderson BE. Core stability training for injury prevention. Sports Health. 2013;5(6):514522. doi:10.1177/1941738113481200

  • 12.

    Stevens VK, Bouche KG, Mahieu NN, Coorevits PL, Vanderstraeten GG, Danneels LA. Trunk muscle activity in healthy subjects during bridging stabilization exercises. BMC Musculoskelet Disord. 2006;7(1):75. doi:10.1186/1471-2474-7-75

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Okubo Y, Kaneoka K, Imai A, et al. Electromyographic analysis of transversus abdominis and lumbar multifidus using wire electrodes during lumbar stabilization exercises. J Orthop Sports Phys Ther. 2010;40(11):743750. doi:10.2519/jospt.2010.3192

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lehman GJ. Trunk and hip muscle recruitment patterns during the prone leg extension following a lateral ankle sprain: a prospective case study pre and post injury. Chiropr Osteopat. 2006;14(1):4. doi:10.1186/1746-1340-14-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Imai A, Kaneoka K, Okubo Y, et al. Trunk muscle activity during lumbar stabilization exercises on both a stable and unstable surface. J Orthop Sports Phys Ther. 2010;40(6):369375. doi:10.2519/jospt.2010.3211

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Richardson CA, Jull GA. Muscle control-pain control. What exercises would you prescribe? Man Ther. 1995;1(1):210. doi:10.1054/math.1995.0243

  • 17.

    Bergmark A. Stability of the lumbar spine. Acta Orthop Scand. 1989;60(suppl 230):154. doi:10.3109/17453678909154177

  • 18.

    Ferreira PH, Ferreira ML, Nascimento DP, Pinto RZ, Franco MR, Hodges PW. Discriminative and reliability analyses of ultrasound measurement of abdominal muscles recruitment. Man Ther. 2011;16(5):463469. doi:10.1016/j.math.2011.02.010

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Saliba SA, Croy T, Guthrie R, Grooms D, Weltman A, Grindstaff TL. Differences in transverse abdominis activation with stable and unstable bridging exercises in individuals with low back pain. N Am J Sports Phys Ther. 2010;5(2):6373.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Guthrie RJ, Grindstaff TL, Croy T, Ingersoll CD, Saliba SA. The effect of traditional bridging or suspension-exercise bridging on lateral abdominal thickness in individuals with low back pain. J Sport Rehabil. 2012;21(2):151160. doi:10.1123/jsr.21.2.151

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kim M-J, Oh D-W, Park H-J. Integrating arm movement into bridge exercise: effect on EMG activity of selected trunk muscles. J Electromyogr Kinesiol. 2013;23(5):11191123. doi:10.1016/j.jelekin.2013.07.001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Luk JTC, Kwok FKC, Ho IMK, Wong DP. Acute responses of core muscle activity during bridge exercises on the floor vs. the suspension system. Int J Environ Res Public Health. 2021;18(11):5908. doi:10.3390/ijerph18115908

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cho M, Jeon H. The effects of bridge exercise on an unstable base of support on lumbar stability and the thickness of the transversus abdominis. J Phys Ther Sci. 2013;25(6):733736. doi:10.1589/jpts.25.733

    • Search Google Scholar
    • Export Citation
  • 24.

    Marín PJ, Cochrane DJ. The effects of whole-body vibration on EMG activity of the lower body muscles in supine static bridge position. J Musculoskelet Neuronal Interact. 2021;21(1):5967.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Xiao J, Sun J, Gao J, Wang H, Yang X. The activity of surface electromyographic signal of selected muscles during classic rehabilitation exercise. Rehabil Res Pract. 2016;2016:4796875. doi:10.1155/2016/4796875

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Choi Y, Kang H. The effects of sling exercise using vibration on trunk muscle activities of healthy adults. J Phys Ther Sci. 2013;25(10):12911294. doi:10.1589/jpts.25.1291

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Czaprowski D, Afeltowicz A, Gębicka A, et al. Abdominal muscle EMG-activity during bridge exercises on stable and unstable surfaces. Phys Ther Sport. 2014;15(3):162168. doi:10.1016/j.ptsp.2013.09.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Garcia-Vaquero MP, Moreside JM, Brontons-Gil E, Peco-Gonzalez N, Vera-Garcia FJ. Trunk muscle activation during stabilization exercises with single and double leg support. J Electromyogr Kinesiol. 2012;22(3):398406. doi:10.1016/j.jelekin.2012.02.017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Arokoski JP, Valta T, Kankaanpaa M, Airaksinen O. Activation of lumbar paraspinal and abdominal muscles during therapeutic exercises in chronic low back pain patients. Arch Phys Med Rehabil. 2004;85(5):823832. doi:10.1016/j.apmr.2003.06.013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Moghadam N, Ghaffari MS, Noormohammadpour P, et al. Comparison of the recruitment of transverse abdominis through drawing-in and bracing in different core stability training positions. J Exerc Rehabil. 2019;15(6):819825. doi:10.12965/jer.1939064.352

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lehman GJ, Hoda W, Oliver S. Trunk muscle activity during bridging exercises on and off a Swissball. Chiropr Osteopat. 2005;13(1):14. doi:10.1186/1746-1340-13-14

    • Search Google Scholar
    • Export Citation
  • 32.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361374. doi:10.1016/S1050-6411(00)00027-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kellis E, Ellinoudis A, Intziegianni K, Kofotolis N. Muscle thickness during core stability exercises in children and adults. J Hum Kinet. 2020;71(1):131144. doi:10.2478/hukin-2019-0079

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hodges PWW, Pengel LHMH, Herbert RDD, Gandevia SCC. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve. 2003;27(6):682692. doi:10.1002/mus.10375

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Koumantakis GA, Nikoloudaki M, Thacheth S, et al. Reliability and validity measurement of sagittal lumbosacral quiet standing posture with a smartphone application in a mixed population of 183 college students and personnel. Adv Orthop. 2016;2016:3817270. doi:10.1155/2016/3817270

    • Search Google Scholar
    • Export Citation
  • 36.

    Dafkou K, Sahinis C, Ellinoudis A, Kellis E. Is the integration of additional eccentric, balance and core muscles exercises into a typical soccer program effective in improving strength and postural stability? Sports. 2021;9(11):147. doi:10.3390/sports9110147

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Takaki S, Kaneoka K, Okubo Y, et al. Analysis of muscle activity during active pelvic tilting in sagittal plane. Phys Ther Res. 2016;19(1):5057. doi:10.1298/ptr.E9900

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Schellenberg KL, Lang JM, Chan KM, Burnham RS. A clinical tool for office assessment of lumbar spine stabilization endurance. Am J Phys Med Rehabil. 2007;86(5):380386. doi:10.1097/PHM.0b013e318032156a

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Behm DG, Drinkwater EJ, Willardson JM, Cowley PM. Canadian society for exercise physiology position stand: the use of instability to train the core in athletic and nonathletic conditioning. Appl Physiol Nutr Metab. 2010;35(1):109112. doi:10.1139/H09-128

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Barr KP, Griggs M, Cadby T. Lumbar stabilization. Am J Phys Med Rehabil. 2005;84(6):473480. doi:10.1097/01.phm.0000163709.70471.42

  • 41.

    Gill NW, Mason BE, Gerber JP. Lateral abdominal muscle symmetry in collegiate single-sided rowers. Int J Sports Phys Ther. 2012;7(1):1319.

All Time Past Year Past 30 Days
Abstract Views 1437 966 49
Full Text Views 158 146 1
PDF Downloads 72 59 1