What Are We Aiming for in Eccentric Hamstring Training: Angle-Specific Control or Supramaximal Stimulus?

Click name to view affiliation

Tobias Alt Department of Biomechanics, Performance Analysis and Strength & Conditioning, Olympic Training and Testing Center Westphalia, Dortmund, Germany
Institute of Movement and Neuroscience, German Sport University, Cologne, Germany

Search for other papers by Tobias Alt in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4451-9512 *
,
Axel J. Knicker Institute of Movement and Neuroscience, German Sport University, Cologne, Germany
Research Center for Elite Sports (momentum),Cologne, Germany

Search for other papers by Axel J. Knicker in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6286-5961
,
Yannick T. Nodler Institute of Movement and Neuroscience, German Sport University, Cologne, Germany

Search for other papers by Yannick T. Nodler in
Current site
Google Scholar
PubMed
Close
, and
Heiko K. Strüder Institute of Movement and Neuroscience, German Sport University, Cologne, Germany
Research Center for Elite Sports (momentum),Cologne, Germany

Search for other papers by Heiko K. Strüder in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Different resistance exercise determinants modulate the musculotendinous adaptations following eccentric hamstring training. The Nordic Hamstring Exercise (NHE) can be performed 2-fold: the movement velocity irreversibly increases toward the end of the range of motion or it is kept constant. Design: This cross-sectional study aimed to investigate if the downward acceleration angle (DWAangle) can be used as a classification parameter to distinguish between increasing and constant velocity NHE execution. Furthermore, the kinetic and kinematic differences of these 2 NHE execution conditions were examined by analyzing the DWAangle in relation to the angle of peak moment. Methods: A total of 613 unassisted NHE repetitions of 12 trained male sprinters (22 y, 181 cm, 76 kg) were analyzed. Results: The majority of analyzed parameters demonstrated large effects. NHEs with constant velocity  (n = 285) revealed significantly higher impulses (P < .001; d = 2.34; + 61%) and fractional time under tension (P < .001; d = 1.29; +143%). Although the generated peak moments were significantly higher for constant velocity (P = .003; d = 0.29; +4%), they emerged at similar knee flexion angles (P = .167; d = 0.28) and revealed on average just low relationships to the DWAangle (Rmean2=22.4%). DWAangle highly correlated with the impulse (Rmean2=60.8%) and δ (DWAangle–angle of peak moment; Rmean2=83.6%). Conclusions: Relating DWAangle to angle of peak moment assists to distinguish between significantly different NHE execution, which will potentially elicit different musculotendinous adaptations. These insights are essential for coaches and athletes to understand how to manipulate eccentric hamstring training to change its purpose.

The downward acceleration angle (DWAangle) can be used as a classification parameter to distinguish between increasing (vinc) and constant velocity (vcon) Nordic Hamstring Exercise (NHE) execution.

Constant velocity NHEs revealed 61% higher impulses and 143% longer fractional time under tension  (TUT < 45° knee flexion) than increasing velocity executions.

Peak moments were 4% higher for vcon NHEs but occurred at similar knee flexion angles.

Both NHE execution conditions demonstrated substantially different kinematics and kinetics, which will affect the subsequent musculotendinous adaptations.

  • Collapse
  • Expand
  • 1.

    Isner-Horobeti ME, Dufour SP, Vautravers P, Geny B, Coudeyre E, Richard R. Eccentric exercise training: modalities, applications and perspectives. Sports Med. 2013;43(6):483512. doi:10.1007/s40279-013-0052-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kruse A, Rivares C, Weide G, Tilp M, Jaspers RT. Stimuli for adaptations in muscle length and the length range of active force exertion—a narrative review. Front Physiol. 2021;12:742034. doi:10.3389/fphys.2021.742034

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):17751783. doi:10.1111/sms.13085

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bohm S, Mersmann F, Arampatzis A. Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open. 2015;1(1):7. doi:10.1186/s40798-015-0009-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Brockett CL, Morgan DL, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc. 2001;33(5):783790. doi:10.1097/00005768-200105000-00017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hinks A, Franchi MV, Power GA. The influence of longitudinal muscle fascicle growth on mechanical function. J Appl Physiol. 2022;133(1):87103. doi:10.1152/japplphysiol.00114.2022

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Heiderscheit BC, Sherry MA, Silder A, Chumanov ES, Thelen DG. Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. J Orthop Sports Phys Ther. 2010;40(2):6781. doi:10.2519/jospt.2010.3047

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. 2006;97(6):643663. doi:10.1007/s00421-006-0238-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Herzog W, Guimaraes AC, Anton MG, Carter-Erdman KA. Moment-length relations of rectus femoris muscles of speed skaters/cyclists and runners. Med Sci Sports Exerc. 1991;23(11):12891296. PubMed ID: 1766346

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Savelberg HH, Meijer K. Contribution of mono- and biarticular muscles to extending knee joint moments in runners and cyclists. J Appl Physiol. 2003;94(6):22412248. doi:10.1152/japplphysiol.01001.2002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Marušič J, Vatovec R, Markovic G, Sarabon N. Effects of eccentric training at long-muscle length on architectural and functional characteristics of the hamstrings. Scand J Med Sci Sports. 2020;30(11):21302142. doi:10.1111/sms.13770

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Alt T, Severin J, Komnik I, et al. Nordic hamstring exercise training induces improved lower-limb swing phase mechanics and sustained strength preservation in sprinters. Scand J Med Sci Sports. 2021;31(4):826838. doi:10.1111/sms.13909

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bautista IJ, Vicente-Mampel J, Baraja-Vegas L, Segarra V, Martin F, Van Hooren B. The effects of the Nordic hamstring exercise on sprint performance and eccentric knee flexor strength: a systematic review and meta-analysis of intervention studies among team sport players. J Sci Med Sport. 2021;24(9):931938. doi:10.1016/j.jsams.2021.03.009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Al Attar WS, Soomro N, Sinclair PJ, Pappas E, Sanders RH. Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sports Med. 2017;47(5):907916. doi:10.1007/s40279-016-0638-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    van Dyk N, Behan FP, Whiteley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br J Sports Med. 2019;53(21):13621370. doi:10.1136/bjsports-2018-100045

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ditroilo M, De Vito G, Delahunt E. Kinematic and electromyographic analysis of the Nordic hamstring exercise. J Electromyogr Kinesiol. 2013;23(5):11111118. doi:10.1016/j.jelekin.2013.05.008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Alt T, Knicker AJ, Nodler YT, Strüder HK. Assisted or unassisted Nordic hamstring exercise?—Resistance exercise determinants at a glance. Sports Biomech. Published online March 16, 2021:115. doi:10.1080/14763141.2021.1893376

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sconce E, Heller B, Maden-Wilkinson T, Hamilton N. Agreement between methods and terminology used to assess the kinematics of the Nordic hamstring exercise. J Sports Sci. 2021;39(24):28592868. doi:10.1080/02640414.2021.1968127

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sconce E, Jones P, Turner E, Comfort P, Graham-Smith P. The validity of the Nordic hamstring lower for a field-based assessment of eccentric hamstring strength. J Sport Rehabil. 2015;24(1):1320. doi:10.1123/JSR.2013-0097

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cuthbert M, Ripley N, McMahon JJ, Evans M, Haff GG, Comfort P. The effect of Nordic hamstring exercise intervention volume on eccentric strength and muscle architecture adaptations: a systematic review and meta-analyses. Sports Med. 2020;50(1):8399. doi:10.1007/s40279-019-01178-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Alt T, Nodler YT, Severin J, Knicker AJ, Strüder HK. Comment on: “the effect of Nordic hamstring exercise intervention volume on eccentric strength and muscle architecture adaptations: a systematic review and meta-analyses.” Sports Med. 2020;50(1):219221. doi:10.1007/s40279-019-01244-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mjolsnes R, Arnason A, Osthagen T, Raastad T, Bahr RA. 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports. 2004;14(5):311317. doi:10.1046/j.1600-0838.2003.367.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Matthews MJ, Jones P, Cohen D, Matthews H. The assisted Nordic hamstring curl. Strength Cond J. 2015;37(1):8487. doi:10.1519/SSC.0000000000000084

    • Search Google Scholar
    • Export Citation
  • 24.

    Alt T, Nodler YT, Severin J, Knicker AJ, Strüder HK. Velocity-specific and time-dependent adaptations following a standardized Nordic hamstring exercise training. Scand J Med Sci Sports. 2018;28(1):6576. doi:10.1111/sms.12868

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Pollard CW, Opar DA, Williams MD, Bourne MN, Timmins RG. Razor hamstring curl and Nordic hamstring exercise architectural adaptations: impact of exercise selection and intensity. Scand J Med Sci Sports. 2019;29(5):706715. doi:10.1111/sms.13381

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Alt T, Roos T, Nolte K, Modenbach D, Knicker AJ, Jaitner T. Modulating the Nordic hamstring exercise from “zero to hero”—a stepwise progression explored in a high-performance athlete. J Athl Train. Published online August 22, 2022. doi:10.4085/1062-6050-0010.22

    • Search Google Scholar
    • Export Citation
  • 27.

    Pincheira PA, Boswell MA, Franchi MV, Delp SL, Lichtwark GA. Biceps femoris long head sarcomere and fascicle length adaptations after 3 weeks of eccentric exercise training. J Sport Health Sci. 2022;11(1):4349. doi:10.1016/j.jshs.2021.09.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Raiteri BJ, Beller R, Hahn D. Biceps femoris long head muscle fascicles actively lengthen during the Nordic hamstring exercise. Front Sports Act Living. 2021;3:669813. doi:10.3389/fspor.2021.669813

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Alt T, Komnik I, Severin J, et al. Swing phase mechanics of maximal velocity sprints – does isokinetic lower-limb muscle strength matter? Int J Sports Physiol Perform. 2021;16(7):974984. doi:10.1123/ijspp.2020-0423

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Van Hooren B, Vanwanseele B, van Rossom S, et al. Muscle forces and fascicle behavior during three hamstring exercises. Scand J Med Sci Sports. 2022;32(6):9971012. doi:10.1111/sms.14158

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Pincheira PA, Riveros-Mattey C, Lichtwark GA. Isometric fascicle behaviour of the biceps femoris long head muscle during Nordic hamstring exercise variations. J Sci Med Sport. 2022;25(8):684689. doi:10.1016/j.jsams.2022.05.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    McKay AKA, Stellingwerff T, Smith ES, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317331. doi:10.1123/ijspp.2021-0451

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hanavan EP. A Mathematical Model of the Human Body. AMRL-TR; 1964

  • 34.

    Alt T, Schmidt M. The ANHEQ evaluation criteria: introducing reliable rating scales for assessing Nordic hamstring exercise quality. Sports Med Open. 2021;7(1):91. doi:10.1186/s40798-021-00383-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Erlbaum; 1988.

  • 36.

    Hinkle DE, Wiersma W, Jurs SG. Applied Statistics for the Behavioral Sciences. 5th ed. Houghton Mifflin; 2003.

  • 37.

    Marshall PW, Lovell R, Knox MF, Brennan SL, Siegler JC. Hamstring fatigue and muscle activation changes during six sets of Nordic hamstring exercise in amateur soccer players. J Strength Cond Res. 2015;29(11):31243133. doi:10.1519/JSC.0000000000000966

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Delahunt E, McGroarty M, De Vito G, Ditroilo M. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol. 2016;116(4):663672. doi:10.1007/s00421-015-3325-3

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1981 1269 65
Full Text Views 167 153 5
PDF Downloads 120 104 6