Development and Reliability of a Visual-Cognitive Reactive Triple Hop Test

Click name to view affiliation

Byrnadeen T. Farraye Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA

Search for other papers by Byrnadeen T. Farraye in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0002-8791-2135 *
,
Janet E. Simon Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA
Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA

Search for other papers by Janet E. Simon in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6308-2387
,
Meredith Chaput Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA

Search for other papers by Meredith Chaput in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2254-8774
,
HoWon Kim Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA

Search for other papers by HoWon Kim in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1766-3452
,
Scott M. Monfort Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA

Search for other papers by Scott M. Monfort in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5270-0592
, and
Dustin R. Grooms Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA
Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA

Search for other papers by Dustin R. Grooms in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6102-8224
Restricted access

Context: Current lower-extremity return to sport testing primarily considers the physical status of an athlete; however, sport participation requires continuous cognitive dual-task engagement. Therefore, the purpose was to develop and evaluate the reliability of a visual-cognitive reactive (VCR) triple hop test that simulates the typical sport demand of combined online visual-cognitive processing and neuromuscular control to improve return to sport testing after lower-extremity injury. Design: Test–retest reliability. Methods: Twenty-one healthy college students (11 females, 23.5 [3.7] y, 1.73 [0.12] m, 73.0 [16.8] kg, Tegner Activity Scale 5.5 [1.1] points) participated. Participants performed a single-leg triple hop with and without a VCR dual task. The VCR task incorporated the FitLight system to challenge peripheral response inhibition and central working memory. Maximum hop distance, reaction time, cognitive errors, and physical errors were measured. Two identical testing visits were separated by 12 to 17 days (14 [1] d). Results: Traditional triple hop (intraclass correlation coefficients: ICC(3,1) = .96 [.91–.99]; standard error of the measurement = 16.99 cm) and the VCR triple hop (intraclass correlation coefficients(3,1) = .92 [.82–.97]; standard error of the measurement = 24.10 cm) both demonstrated excellent reliability for the maximum hop distance, and moderate reliability for the VCR triple hop reaction time (intraclass correlation coefficients(3,1) = .62 [.09–.84]; standard error of the measurement = 0.09 s). On average, the VCR triple hop resulted in a hop distance deficit of 8.17% (36.4 [5.1] cm; P < .05, d = 0.55) relative to the traditional triple hop. Conclusions: Hop distance on the VCR triple hop had excellent test–retest reliability and induced a significant physical performance deficit when compared with the traditional triple hop assessment. The VCR triple hop reaction time also demonstrated moderate reliability.

The visual-cognitive reactive dual-task challenges peripheral response inhibition, central visual attention, and working memory during the triple hop test.

Hop performance deficits may be more apparent with the addition of a visual-cognitive reactive dual–task.

Visual-cognitive cost on physical performance at return to sport can be captured through the visual-cognitive reactive triple hop.

Supplementary Materials

    • Supplementary Video 1 (ZIP 12.9 MB)
    • Supplementary Video 2 (ZIP 13.7 MB)
  • Collapse
  • Expand
  • 1.

    Patel DR, Yamasaki A, Brown K. Epidemiology of sports-related musculoskeletal injuries in young athletes in United States. Transl Pediatr. 2017;6(3):160166. doi:10.21037/tp.2017.04.08

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Brant JA, Johnson B, Brou L, Comstock RD, Vu T. Rates and patterns of lower-extremity sports injuries in all gender-comparable US high school sports. Orthop J Sports Med. 2019;7(10):3059. doi:10.1177/2325967119873059

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: The Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804808. doi:10.1136/bjsports-2016-096031

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Noyes FR, Barber SD, Mangine R. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med. 1991;19:513518. doi:10.1177/036354659101900518

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Paterno MV, Huang B, Thomas S, Hewett TE, Schmitt LC. Clinical factors that predict a second ACL injury after ACL reconstruction and return to sport: preliminary development of a clinical decision algorithm. Orthop J Sports Med. 2017;5(12):5279. doi:10.1177/2325967117745279

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hamilton RT, Shultz SJ, Schmitz RJ, Perrin DH. Triple-hop distance as a valid predictor of lower limb strength and power. J Athl Train. 2008;43(2):144151. doi:10.4085/1062-6050-43.2.144

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):15671573. doi:10.1177/0363546514530088

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Webster KE, Hewett TE. What is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis. Sports Med. 2019;49(6):917929. doi:10.1007/s40279-019-01093-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Aksum KM, Brotangen L, Bjørndal CT, Magnaguagno L, Jordet G. Scanning activity of elite football players in 11 vs. 11 match play: an eye-tracking analysis on the duration and visual information of scanning. PLoS One. 2021;16(8):e0244118. doi:10.1371/journal.pone.0244118

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Wang CH, Chang CC, Liang YM, et al. Open vs. closed skill sports and the modulation of inhibitory control. PLoS One. 2013;8(2):e55773. doi:10.1371/journal.pone.0055773

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Heppe H, Zentgraf K. Team handball experts outperform recreational athletes in hand and foot response inhibition: a behavioral study. Front Psychol. 2019;10:971. Accessed August 17, 2022. https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00971

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Roca A, Ford PR, McRobert AP, Williams AM. Perceptual-cognitive skills and their interaction as a function of task constraints in soccer. J Sport Exerc Psychol. 2013;35(2):144155. doi:10.1123/jsep.35.2.144

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Monfort SM, Pradarelli JJ, Grooms DR, Hutchison KA, Onate JA, Chaudhari AMW. Visual-spatial memory deficits are related to increased knee valgus angle during a sport-specific sidestep cut. Am J Sports Med. 2019;47(6):14881495. doi:10.1177/0363546519834544

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6):943948. doi:10.1177/0363546507299532

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rosen AB, McGrath ML, Maerlender AL. Males with chronic ankle instability demonstrate deficits in neurocognitive function compared to control and copers. Res Sports Med. 2021;29(2):116128. doi:10.1080/15438627.2020.1723099

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wilke J, Groneberg DA. Neurocognitive function and musculoskeletal injury risk in sports: a systematic review. J Sci Med Sport. 2022;25(1):4145. doi:10.1016/j.jsams.2021.07.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Chaput M, Onate JA, Simon JE, et al. Visual cognition associated with knee proprioception, time to stability, and sensory integration neural activity after ACL reconstruction. J Orthop Res. 2022;40(1):25014. doi:10.1002/jor.25014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AMW, White SE, Onate JA. Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2017;47(3):180189. doi:10.2519/jospt.2017.7003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Criss CR, Onate JA, Grooms DR. Neural activity for hip-knee control in those with anterior cruciate ligament reconstruction: a task-based functional connectivity analysis. Neurosci Lett. 2020;730:134985. doi:10.1016/j.neulet.2020.134985

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bodkin S, Hertel J, Hart J. Gaze accuracy differences during single-leg balance following anterior cruciate ligament reconstruction. J Sport Rehabil. 2020;30:287. doi:10.1123/jsr.2020-0287

    • Search Google Scholar
    • Export Citation
  • 21.

    Miko S, Simon J, Monfort S, Yom J, Ulloa S, Grooms D. Postural stability during visual-based cognitive and motor dual-tasks after ACLR. J Sci Med Sport. 2020;24:8. doi:10.1016/j.jsams.2020.07.008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Schnittjer A, Simon JE, Yom J, Grooms DR. The effects of a cognitive dual task on jump-landing movement quality. Int J Sports Med. 2021;42(1):9095. doi:10.1055/a-1195-2700

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Bodkin SG, Hertel J, Diduch DR, et al. Predicting anterior cruciate ligament reinjury from return-to-activity assessments at 6 months postsurgery: a prospective cohort study. J Athl Train. 2021;57(4):325333. doi:10.4085/1062-6050-0407.20

    • Search Google Scholar
    • Export Citation
  • 24.

    Ness BM, Zimney K, Kernozek T, Schweinle WE, Schweinle A. Incorporating a dual-task assessment protocol with functional hop testing. Int J Sports Phys Ther. 2020;15(3):407420. PubMed ID: 32566377

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Simon JE, Millikan N, Yom J, Grooms DR. Neurocognitive challenged hops reduced functional performance relative to traditional hop testing. Phys Ther Sport. 2020;41:97102. doi:10.1016/j.ptsp.2019.12.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Millikan N, Grooms DR, Hoffman B, Simon JE. The development and reliability of 4 clinical neurocognitive single-leg hop tests: implications for return to activity decision-making. J Sport Rehabil. 2019;28(5):37. doi:10.1123/jsr.2018-0037

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Farraye BT, Chaput M, Simon JE, Kim H, Grooms DR, Monfort SM. Development and reliability of a visual-cognitive medial side hop for return to sport testing. Phys Ther Sport. 2022;57:4045. doi:10.1016/j.ptsp.2022.07.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Reid A, Birmingham TB, Stratford PW, Alcock GK, Giffin JR. Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther. 2007;87(3):337349. doi:10.2522/ptj.20060143

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hopper DM, Goh SC, Wentworth LA, et al. Test–retest reliability of knee rating scales and functional hop tests one year following anterior cruciate ligament reconstruction. Phys Ther Sport. 2002;3(1):1018. doi:10.1054/ptsp.2001.0094

    • Search Google Scholar
    • Export Citation
  • 30.

    Negrete R, Simms S, Gross J, et al. The test re-test reliability of a novel single leg hop test (T-drill hop test). Int J Sports Phys Ther. 2021;16(3):724731. doi:10.26603/001c.23677

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kea J, Kramer J, Forwell L, Birmingham T. Hip abduction-adduction strength and one-leg hop tests: test-retest reliability and relationship to function in elite ice hockey players. J Orthop Sports Phys Ther. 2001;31(8):446455. doi:10.2519/jospt.2001.31.8.446

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Spencer EA, Appleby PN, Davey GK, Key TJ. Validity of self-reported height and weight in 4808 EPIC–Oxford participants. Public Health Nutr. 2002;5(4):561565. doi:10.1079/PHN2001322

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hodge JM, Shah R, McCullough ML, Gapstur SM, Patel AV. Validation of self-reported height and weight in a large, nationwide cohort of U.S. adults. PLoS One. 2020;15(4):e0231229. doi:10.1371/journal.pone.0231229

    • Search Google Scholar
    • Export Citation
  • 34.

    Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985;198:4249. PubMed ID: 4028566

    • Search Google Scholar
    • Export Citation
  • 35.

    van Melick N, Meddeler BM, Hoogeboom TJ, Nijhuis-van der Sanden MWG, van Cingel REH. How to determine leg dominance: the agreement between self-reported and observed performance in healthy adults. PLoS One. 2017;12(12):e0189876. doi:10.1371/journal.pone.0189876

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ebert JR, Edwards P, Preez LD, Furzer B, Joss B. Knee extensor strength, hop performance, patient-reported outcome and inter-test correlation in patients 9–12 months after anterior cruciate ligament reconstruction. The Knee. 2021;30:176184. doi:10.1016/j.knee.2021.04.012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ebert JR, Du Preez L, Furzer B, Edwards P, Joss B. Which hop tests can best identify functional limb asymmetry in patients 9–12 months after anterior cruciate ligament reconstruction employing a hamstrings tendon autograft? Int J Sports Phys Ther. 2021;16(2):393403. doi:10.26603/001c.21140

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Wilkerson GB, Simpson KA, Clark RA. Assessment and training of visuomotor reaction time for football injury prevention. J Sport Rehabil. 2017;26(1):2634. doi:10.1123/jsr.2015-0068

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Bigsby K, Mangine RE, Clark JF, et al. Effects of postural control manipulation on visuomotor training performance: comparative data in healthy athletes. Int J Sports Phys Ther. 2014;9(4):436446. PubMed ID: 25133072

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Brinkman C, Baez SE, Quintana C, et al. The reliability of an upper- and lower-extremity visuomotor reaction time task. J Sport Rehabil. 2020;30(5):828831. doi:10.1123/jsr.2020-0146

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Herman DC, Barth JT. Drop-jump landing varies with baseline neurocognition. Am J Sports Med. 2016;44(9):23472353. doi:10.1177/0363546516657338

  • 42.

    Wilkerson G. Neurocognitive reaction time predicts lower-extremity sprains and strains. Int J Athl Ther Train. 2012;17:49. doi:10.1123/ijatt.17.6.4

    • Search Google Scholar
    • Export Citation
  • 43.

    Mohammadi Rad S, Salavati M, Ebrahimi I, et al. Dual-tasking effects on dynamic postural stability in athletes with and without anterior cruciate ligament reconstruction. J Sport Rehabil. 2016;25:12. doi:10.1123/jsr.2015-0012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Baumeister J, Reinecke K, Schubert M, Weiß M. Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res. 2011;29(9):13831389. doi:10.1002/jor.21380

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Williams AM, Davids K, Williams JGP. Visual Perception and Action in Sport. Taylor & Francis; 1999.

All Time Past Year Past 30 Days
Abstract Views 2881 1442 125
Full Text Views 225 184 6
PDF Downloads 138 93 12