Low-Intensity Resistance Exercise Based on Myofascial Chains Alters the Lower-Limb Tension and Improves Health Status in Female Individuals With Knee Osteoarthritis

Click name to view affiliation

Yao Lu Qilu Institute of Technology, Qufu, SD, China

Search for other papers by Yao Lu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4972-4125
,
Jie Chen Qingdao Hengxing University of Science and Technology, Qingdao, SD, China
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand

Search for other papers by Jie Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6378-993X
, and
Xue-lin Zhang Department of Physical Science, Qufu Normal University, Qufu, SD, China

Search for other papers by Xue-lin Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1528-1645 *
Restricted access

Background: Low-intensity resistance exercise therapy (LIRET) based on myofascial chains, applied to both affected and nonlocal joints, is an effective method for knee osteoarthritis (OA) rehabilitation. This study applied LIRET in a comparison of prevalues and postvalues of lower-limb tension in female patients with knee OA and asymptomatic participants. Methods: Twenty-four female participants with knee OA and 20 asymptomatic women took part in a 3-month long application of LIRET. Participants’ ankle passive torque and ankle range of motion in the sagittal plane were assessed with an isokinetic dynamometer. The collected values were used to estimate the sagittal-plane lower-limb tension. Results: Compared with the asymptomatic group, participants with knee OA presented decreased maximum ankle dorsiflexion (P < .001), decreased ankle plantar flexion range (P = .023), ankle resting position more inclined to dorsiflexion (P = .017), increased ankle dorsiflexion stiffness (P = .005), and lower ankle plantar flexion stiffness (P = .034). After exercise intervention, the knee OA group self-reported less knee pain (P < .001), improved physical function (P < .001), increased maximum dorsiflexion (P = .021), and increased plantar flexion range (P < .001). While plantar flexion stiffness increased (P = .037), dorsiflexion stiffness decreased (P = .015) and ankle resting position moved toward dorsiflexion (P = .002). Results suggest possible decreased anterior leg tension and possible increased posterior leg tension in patients with knee OA. Conclusions: The results supported that knee OA patients present imbalanced myofascial tension of lower limbs. LIRET based on myofascial chains appears to decrease pain, and stiffness, and improve physical function of patients with knee OA and change their lower-limb tension.

Knee osteoarthritis patients may have an imbalanced tension of lower limbs.

Nonlocal exercise appears to change the lower-limb tension of patients with knee osteoarthritis.

  • Collapse
  • Expand
  • 1.

    Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):12111259. doi:10.1016/S0140-6736(17)32154-2

    • Search Google Scholar
    • Export Citation
  • 2.

    Grotle M, Hagen KB, Natvig B, Dahl FA, Kvien TK. Prevalence and burden of osteoarthritis: results from a population survey in Norway. J Rheumatol. 2008;35(4):677684. PubMed ID: 18278832

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Andrianakos AA, Kontelis LK, Karamitsos DG, et al. Prevalence of symptomatic knee, hand, and hip osteoarthritis in Greece. The ESORDIG study. J Rheumatol. 2006;33(12):25072513. PubMed ID: 17143985

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Sun Y, Sturmer T, Gunther KP, Brenner H. Incidence and prevalence of cox- and gonarthrosis in the general population. Z Orthop Ihre Grenzgeb. 1997;135(3):184192. doi:10.1055/s-2008-1039578

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wang SY, Olson-Kellogg B, Shamliyan TA, Choi JY, Ramakrishnan R, Kane RL. Physical therapy interventions for knee pain secondary to osteoarthritis: a systematic review. Ann Intern Med. 2012;157(9):632644. doi:10.7326/0003-4819-157-9-201211060-00007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis. 2014;73(9):16591664. doi:10.1136/annrheumdis-2013-203355

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Brismee JM, Paige RL, Chyu MC, et al. Group and home-based tai chi in elderly subjects with knee osteoarthritis: a randomized controlled trial. Clin Rehabil. 2007;21(2):99111. doi:10.1177/0269215506070505

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Gross KD, Hillstrom H. Knee osteoarthritis: primary care using noninvasive devices and biomechanical principles. Med Clin North Am. 2009;93(1):179200. doi:10.1016/j.mcna.2008.09.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Goh SL, Persson MSM, Stocks J, et al. Relative efficacy of different exercises for pain, function, performance and quality of life in knee and hip osteoarthritis: systematic review and network meta-analysis. Sports Med. 2019;49(5):743761. doi:10.1007/s40279-019-01082-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Grieve R, Goodwin F, Alfaki M, Bourton AJ, Jeffries C, Scott H. The immediate effect of bilateral self myofascial release on the plantar surface of the feet on hamstring and lumbar spine flexibility: a pilot randomised controlled trial. J Bodyw Mov Ther. 2015;19(3):544552. doi:10.1016/j.jbmt.2014.12.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wilke J, Kalo K, Niederer D, Vogt L, Banzer W. Gathering hints for myofascial force transmission under in vivo conditions: are remote exercise effects age dependent? J Sport Rehabil. 2019;28(7):758763. doi:10.1123/jsr.2018-0184

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wilke J, Niederer D, Vogt L, Banzer W. Remote effects of lower limb stretching: preliminary evidence for myofascial connectivity? J Sports Sci. 2016;34(22):21452148. doi:10.1080/02640414.2016.1179776

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Wilke J, Vogt L, Niederer D, Banzer W. Is remote stretching based on myofascial chains as effective as local exercise? A randomised-controlled trial. J Sports Sci. 2017;35(20):20212027. doi:10.1080/02640414.2016.1251606

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Joshi DG, Balthillaya G, Prabhu A. Effect of remote myofascial release on hamstring flexibility in asymptomatic individuals—a randomized clinical trial. J Bodyw Mov Ther. 2018;22(3):832837. doi:10.1016/j.jbmt.2018.01.008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Burk C, Perry J, Lis S, Dischiavi S, Bleakley C. Can myofascial interventions have a remote effect on ROM? A systematic review and meta-analysis. J Sport Rehabil. 2020;29(5):650656. doi:10.1123/jsr.2019-0074

    • Search Google Scholar
    • Export Citation
  • 16.

    Blanchard S. Anatomy trains: myofascial meridians for manual and movement therapists. Physical Therapy in Sport. 2014;15(4):269. doi:10.1016/j.ptsp.2014.08.005

    • Search Google Scholar
    • Export Citation
  • 17.

    Krause F, Wilke J, Vogt L, Banzer W. Intermuscular force transmission along myofascial chains: a systematic review. J Anat. 2016;228(6):910918. doi:10.1111/joa.12464

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bartholdy C, Klokker L, Bandak E, Bliddal H, Henriksen M. A standardized “rescue” exercise program for symptomatic flare-up of knee osteoarthritis: description and safety considerations. J Orthop Sports Phys Ther. 2016;46(11):942946. doi:10.2519/jospt.2016.6908

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Nascimento LR, Teixeira-Salmela LF, Souza RB, Resende RA. Hip and knee strengthening is more effective than knee strengthening alone for reducing pain and improving activity in individuals with patellofemoral pain: a systematic review with meta-analysis. J Orthop Sports Phys Ther. 2018;48(1):1931. doi:10.2519/jospt.2018.7365

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hislop AC, Collins NJ, Tucker K, Deasy M, Semciw AI. Does adding hip exercises to quadriceps exercises result in superior outcomes in pain, function and quality of life for people with knee osteoarthritis? A systematic review and meta-analysis. Br J Sports Med. 2020;54(5):263271. doi:10.1136/bjsports-2018-099683

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Vleeming A, Pool-Goudzwaard AL, Stoeckart R, van Wingerden JP, Snijders CJ. The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. Spine. 1995;20(7):753758. doi:10.1097/00007632-199504000-00001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Barker PJ, Briggs CA, Bogeski G. Tensile transmission across the lumbar fasciae in unembalmed cadavers: effects of tension to various muscular attachments. Spine. 2004;29(2):129138. doi:10.1097/01.BRS.0000107005.62513.32

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Carvalhais VO, Ocarino Jde M, Araujo VL, Souza TR, Silva PL, Fonseca ST. Myofascial force transmission between the latissimus dorsi and gluteus maximus muscles: an in vivo experiment. J Biomech. 2013;46(5):10031007. doi:10.1016/j.jbiomech.2012.11.044

    • Search Google Scholar
    • Export Citation
  • 24.

    Huijing PA, Baan GC. Myofascial force transmission: muscle relative position and length determine agonist and synergist muscle force. J Appl Physiol. 2003;94(3):10921107. doi:10.1152/japplphysiol.00173.2002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wilke J, Debelle H, Tenberg S, Dilley A, Maganaris C. Ankle motion is associated with soft tissue displacement in the dorsal thigh: an in vivo investigation suggesting myofascial force transmission across the knee joint. Front Physiol. 2020;11:180. doi:10.3389/fphys.2020.00180

    • Search Google Scholar
    • Export Citation
  • 26.

    Huijing PA, Yaman A, Ozturk C, Yucesoy CA. Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles. Surg Radiol Anat. 2011;33(10):869879. doi:10.1007/s00276-011-0863-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pamuk U, Karakuzu A, Ozturk C, Acar B, Yucesoy CA. Combined magnetic resonance and diffusion tensor imaging analyses provide a powerful tool for in vivo assessment of deformation along human muscle fibers. J Mech Behav Biomed Mater. 2016;63:207219. doi:10.1016/j.jmbbm.2016.06.031

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Pamuk U, Yucesoy CA. MRI analyses show that kinesio taping affects much more than just the targeted superficial tissues and causes heterogeneous deformations within the whole limb. J Biomech. 2015;48(16):42624270. doi:10.1016/j.jbiomech.2015.10.036

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Yaman A, Ozturk C, Huijing PA, Yucesoy CA. Magnetic resonance imaging assessment of mechanical interactions between human lower leg muscles in vivo. J Biomech Eng. 2013;135(9):91003. doi:10.1115/1.4024573

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Wilke J, Schleip R, Yucesoy CA, Banzer W. Not merely a protective packing organ? A review of fascia and its force transmission capacity. J Appl Physiol. 2018;124(1):234244. doi:10.1152/japplphysiol.00565.2017

    • Search Google Scholar
    • Export Citation
  • 31.

    Bhattacharya V, Barooah PS, Nag TC, Chaudhuri GR, Bhattacharya S. Detail microscopic analysis of deep fascia of lower limb and its surgical implication. Indian J Plast Surg. 2010;43(2):135140. doi:10.4103/0970-0358.73424

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Stecco A, Macchi V, Masiero S, et al. Pectoral and femoral fasciae: common aspects and regional specializations. Surg Radiol Anat. 2009;31(1):3542. doi:10.1007/s00276-008-0395-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Stecco C, Corradin M, Macchi V, et al. Plantar fascia anatomy and its relationship with Achilles tendon and paratenon. J Anat. 2013;223(6):665676. doi:10.1111/joa.12111

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Stecco C, Gagey O, Belloni A, et al. Anatomy of the deep fascia of the upper limb. Second part: study of innervation. Morphologie. 2007;91(292):3843. doi:10.1016/j.morpho.2007.05.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Stecco C, Porzionato A, Lancerotto L, et al. Histological study of the deep fasciae of the limbs. J Bodyw Mov Ther. 2008;12(3):225230. doi:10.1016/j.jbmt.2008.04.041

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Tesarz J, Hoheisel U, Wiedenhofer B, Mense S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience. 2011;194:302308. doi:10.1016/j.neuroscience.2011.07.066

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Yahia L, Rhalmi S, Newman N, Isler M. Sensory innervation of human thoracolumbar fascia. An immunohistochemical study. Acta Orthop Scand. 1992;63(2):195197. doi:10.3109/17453679209154822

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Dischiavi SL, Wright AA, Hegedus EJ, Bleakley CM. Biotensegrity and myofascial chains: a global approach to an integrated kinetic chain. Med Hypotheses. 2018;110:9096. doi:10.1016/j.mehy.2017.11.008

    • Search Google Scholar
    • Export Citation
  • 39.

    Wilke J, Vleeming A, Wearing S. Overuse injury: the result of pathologically altered myofascial force transmission? Exerc Sport Sci Rev. 2019;47(4):230236. doi:10.1249/JES.0000000000000205

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Noehren B, Kosmac K, Walton RG, et al. Alterations in quadriceps muscle cellular and molecular properties in adults with moderate knee osteoarthritis. Osteoarthritis Cartilage. 2018;26(10):13591368. doi:10.1016/j.joca.2018.05.011

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Buchmann J, Neustadt B, Buchmann-Barthel K, et al. Objective measurement of tissue tension in myofascial trigger point areas before and during the administration of anesthesia with complete blocking of neuromuscular transmission. Clin J Pain. 2014;30(3):191198. doi:10.1097/AJP.0b013e3182971866

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Dor A, Kalichman L. A myofascial component of pain in knee osteoarthritis. J Bodyw Mov Ther. 2017;21(3):642647. doi:10.1016/j.jbmt.2017.03.025

  • 43.

    Kanda K, Yoda T, Suzuki H, et al. Effects of low-intensity bodyweight training with slow movement on motor function in frail elderly patients: a prospective observational study. Environ Health Prev Med. 2018;23(1):4. doi:10.1186/s12199-018-0693-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Takenami E, Iwamoto S, Shiraishi N, et al. Effects of low-intensity resistance training on muscular function and glycemic control in older adults with type 2 diabetes. J Diabetes Investig. 2019;10(2):331338. doi:10.1111/jdi.12926

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Watanabe Y, Madarame H, Ogasawara R, Nakazato K, Ishii N. Effect of very low-intensity resistance training with slow movement on muscle size and strength in healthy older adults. Clin Physiol Funct Imaging. 2014;34(6):463470. doi:10.1111/cpf.12117

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Raghava Neelapala YV, Bhagat M, Shah P. Hip muscle strengthening for knee osteoarthritis: a systematic review of literature. J Geriatr Phys Ther. 2020;43(2):8998. doi:10.1519/JPT.0000000000000214

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Dantas G, Sacco ICN, Dos Santos AF, et al. Effects of a foot-ankle strengthening programme on clinical aspects and gait biomechanics in people with knee osteoarthritis: protocol for a randomised controlled trial. BMJ Open. 2020;10(9):e039279. doi:10.1136/bmjopen-2020-039279

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Andrade RJ, Lacourpaille L, Freitas SR, McNair PJ, Nordez A. Effects of hip and head position on ankle range of motion, ankle passive torque, and passive gastrocnemius tension. Scand J Med Sci Sports. 2016;26(1):4147. doi:10.1111/sms.12406

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Marinho HVR, Amaral GM, Moreira BS, et al. Myofascial force transmission in the lower limb: An in vivo experiment. J Biomech. 2017;63:5560. doi:10.1016/j.jbiomech.2017.07.026

    • Search Google Scholar
    • Export Citation
  • 50.

    Palmer TB, Akehi K, Thiele RM, Smith DB, Warren AJ, Thompson BJ. Dorsiflexion, plantar-flexion, and neutral ankle positions during passive resistance assessments of the posterior hip and thigh muscles. J Athl Train. 2015;50(5):467474. doi:10.4085/1062-6050-49.6.04

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Souza TR, Fonseca ST, Goncalves GG, Ocarino JM, Mancini MC. Prestress revealed by passive co-tension at the ankle joint. J Biomech. 2009;42(14):23742380. doi:10.1016/j.jbiomech.2009.06.033

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Winters J, Stark L, Seif-Naraghi AH. An analysis of the sources of musculoskeletal system impedance. J Biomech. 1988;21(12):10111025. doi:10.1016/0021-9290(88)90248-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reporting of osteoarthritis. classification of osteoarthritis of the knee. diagnostic and therapeutic criteria committee of the American Rheumatism Association. Arthritis Rheum. 1986;29(8):10391049. doi:10.1002/art.1780290816

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Altman RD. Criteria for classification of clinical osteoarthritis. J Rheumatol Suppl. 1991;27:1012. PubMed ID: 2027107

  • 55.

    Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494502. doi:10.1136/ard.16.4.494

  • 56.

    Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA. 2021;325(6):568578. doi:10.1001/jama.2020.22171

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Lamontagne A, Malouin F, Richards CL. Viscoelastic behavior of plantar flexor muscle-tendon unit at rest. J Orthop Sports Phys Ther. 1997;26(5):244252. doi:10.2519/jospt.1997.26.5.244

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Hoang PD, Herbert RD, Todd G, Gorman RB, Gandevia SC. Passive mechanical properties of human gastrocnemius muscle tendon units, muscle fascicles and tendons in vivo. J Exp Biol. 2007;210(23):41594168. doi:10.1242/jeb.002204

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Winter DA. Biomechanics and Motor Control of Human Movement: E-Book2016. John Wiley & Sons; 2009

  • 60.

    Gajdosik RL. Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech. 2001;16(2):87101. doi:10.1016/S0268-0033(00)00061-9

    • Search Google Scholar
    • Export Citation
  • 61.

    Maas H. Significance of epimuscular myofascial force transmission under passive muscle conditions. J Appl Physiol. 2019;126(5):14651473. doi:10.1152/japplphysiol.00631.2018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Son SM, Kang KW, Lee NK, Nam SH, Kwon JW, Kim K. Influence of isokinetic strength training of unilateral ankle on ipsilateral one-legged standing balance of adults. J Phys Ther Sci. 2013;25(10):13131315. doi:10.1589/jpts.25.1313

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Matsumura M, Usa H, Ogawa D, Ichikawa K, Hata M, Takei H. Pelvis/lower extremity alignment and range of motion in knee osteoarthritis: a case-control study in elderly Japanese women. J Back Musculoskelet Rehabil. 2020;33(3):515521. doi:10.3233/BMR-171038

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Wyndow N, Collins NJ, Vicenzino B, Tucker K, Crossley KM. Foot and ankle characteristics and dynamic knee valgus in individuals with patellofemoral osteoarthritis. J Foot Ankle Res. 2018;11(1):65. doi:10.1186/s13047-018-0310-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Dixon SJ, Hinman RS, Creaby MW, Kemp G, Crossley KM. Knee joint stiffness during walking in knee osteoarthritis. Arthritis Care Res. 2010;62(1):3844. doi:10.1002/acr.20012

    • Search Google Scholar
    • Export Citation
  • 66.

    Oatis CA, Wolff EF, Lennon SK. Knee joint stiffness in individuals with and without knee osteoarthritis: a preliminary study. J Orthop Sports Phys Ther. 2006;36(12):935941. doi:10.2519/jospt.2006.2320

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol. 2004;287(4):C834C843. doi:10.1152/ajpcell.00579.2003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Huijing PA, Maas H, Baan GC. Compartmental fasciotomy and isolating a muscle from neighboring muscles interfere with myofascial force transmission within the rat anterior crural compartment. J Morphol. 2003;256(3):306321. doi:10.1002/jmor.10097

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Kleinrensink GJ, Stoeckart R, Vleeming A, Snijders CJ, Mulder PG. Mechanical tension in the median nerve. the effects of joint positions. Clin Biomech. 1995;10(5):240244. doi:10.1016/0268-0033(95)99801-8

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1141 1141 92
Full Text Views 822 465 1
PDF Downloads 664 366 2