Estimating Quadriceps and Hamstrings Strength Through Myoton Among Recreational Athletes

Click name to view affiliation

Mariano Gacto-Sánchez Department of Physical Therapy, University of Valencia, Valencia, Spain

Search for other papers by Mariano Gacto-Sánchez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0256-331X
,
Francesc Medina-Mirapeix Department of Physical Therapy, University of Valencia, Valencia, Spain

Search for other papers by Francesc Medina-Mirapeix in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8652-3600
,
Josep C. Benítez-Martínez Department of Physical Therapy, University of Valencia, Valencia, Spain

Search for other papers by Josep C. Benítez-Martínez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5118-0668
,
Joaquina Montilla-Herrador Department of Physical Therapy, University of Murcia, Murcia, Spain

Search for other papers by Joaquina Montilla-Herrador in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1581-3621
,
Ana Palanca Endocrinology and Nutrition Department, University Hospital of Valencia, Valencia, Spain

Search for other papers by Ana Palanca in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3513-4458
, and
Rodrigo Martín-San Agustín Department of Physical Therapy, University of Murcia, Murcia, Spain

Search for other papers by Rodrigo Martín-San Agustín in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8201-0189 *
Restricted access

Context: The assessment of strength is one of the most usual practices among professionals involved in health care or sport. Quadriceps and hamstrings are the most commonly assessed muscle groups. Generally, the methods used to assess muscle strength are active and, therefore, alternative passive methods could be useful. Myoton provides measures on 3 mechanical properties of the muscle: tone, elasticity, and stiffness. Objective: This study aimed to analyze the association of Myoton, an easy-to-use tool not requiring voluntary stimulus from the subject, with strength values in quadriceps and hamstrings. Study Design: Experimental. Setting: University kinesiology laboratory. Participants: Thirty-eight recreational athletes were evaluated. Main Outcome Measures: Anthropometric and demographic data, Myoton-based measures of vastus lateralis, rectus femoris, vastus medialis, biceps femoris, and semitendinosus, and the maximum voluntary isometric contraction of quadriceps and hamstrings. Procedures: The association was examined using multiple regression models to estimate strength through Myoton-based parameters and different patient characteristics. The models encompassed either 2 or 3 independent variables. Results: The adjusted R2 values for predicting quadriceps strength were .666 for rectus femoris, .726 for vastus lateralis, and .667 for vastus medialis, while in regard to hamstrings, they were .617 for biceps femoris and .604 for semitendinosus. Conclusions: The main finding was that acceptable relationships were found between muscle strength and Myoton-based parameters when variables such as gender and/or age are considered. Our study reveals a new tool for estimating strength with outstanding advantages: it is easy, time-efficient, adaptable, and highly manageable through the feasible equations provided.

Myoton is easy, adaptable, and highly manageable, and performs passive measurements.

Myoton is able to estimate the strength of the main muscle groups of the lower limb.

A spreadsheet is attached as Supplementary Material (available online) to ease the estimation of strength measures.

Supplementary Materials

    • Supplementary Material (xlsx 8 KB)
  • Collapse
  • Expand
  • 1.

    Thorborg K, Petersen J, Magnusson SP, Hölmich P. Clinical assessment of hip strength using a hand-held dynamometer is reliable. Scand J Med Sci Sports. 2010;20(3):493501. PubMed ID: 19558384 doi:10.1111/j.1600-0838.2009.00958.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Thorlund JB, Michalsik LB, Madsen K, Aagaard P. Acute fatigue-induced changes in muscle mechanical properties and neuromuscular activity in elite handball players following a handball match. Scand J Med Sci Sports. 2008;18(4):462472. PubMed ID: 18028284 doi:10.1111/j.1600-0838.2007.00710.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lankhorst NE, Bierma-Zeinstra SMA, van Middelkoop M. Risk factors for patellofemoral pain syndrome: a systematic review. J Orthop Sports Phys Ther. 2012;42(2):8194. PubMed ID: 22031622 doi:10.2519/jospt.2012.3803

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Muraki S, Akune T, Teraguchi M, et al. Quadriceps muscle strength, radiographic knee osteoarthritis and knee pain: the ROAD study. BMC Musculoskelet Disord. 2015;16(1):305. PubMed ID: 26474770 doi:10.1186/s12891-015-0737-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Haynes EMK, Neubauer NA, Cornett KMD, O’Connor BP, Jones GR, Jakobi JM. Age and sex-related decline of muscle strength across the adult lifespan: a scoping review of aggregated data. Appl Physiol Nutr Metab. 2020;45(11):11851196. PubMed ID: 32598857 doi:10.1139/apnm-2020-0081

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Stark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R. 2011;3(5):472479. PubMed ID: 21570036 doi:10.1016/j.pmrj.2010.10.025

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Massey GJ, Balshaw TG, Maden-Wilkinson TM, Tillin NA, Folland JP. The influence of patellar tendon and muscle-tendon unit stiffness on quadriceps explosive strength in man. Exp Physiol. 2017;102(4):448461. PubMed ID: 28205264 doi:10.1113/EP086190

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Viir R, Virkus A, Laiho K, Rajaleid K, Selart A, Mikkelsson M. Trapezius muscle tone and viscoelastic properties in sitting and supine positions. SJWEH Suppl. 2007;3(3):7680.

    • Search Google Scholar
    • Export Citation
  • 9.

    Heinert BL, Kernozek TW, Greany JF, Fater DC. Hip abductor weakness and lower extremity kinematics during running. J Sport Rehabil. 2008;17(3):243256. PubMed ID: 18708678 doi:10.1123/jsr.17.3.243

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Aird L, Samuel D, Stokes M. Quadriceps muscle tone, elasticity and stiffness in older males: reliability and symmetry using the MyotonPRO. Arch Gerontol Geriatr. 2012;55(2):e31e39. PubMed ID: 22503549 doi:10.1016/j.archger.2012.03.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gavronski G, Veraksits A, Vasar E, Maaroos J. Evaluation of viscoelastic parameters of the skeletal muscles in junior triathletes. Physiol Meas. 2007;28(6):625637. PubMed ID: 17664617 doi:10.1088/0967-3334/28/6/002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bravo-Sánchez A, Abián P, Sánchez-Infante J, Esteban-Gacía P, Jiménez F, Abián-Vicén J. Objective assessment of regional stiffness in Vastus Lateralis with different measurement methods: a reliability study. Sensors. 2021;21(9):3213. PubMed ID: 34066343 doi:10.3390/s21093213

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mullix J, Warner M, Stokes M. Testing muscle tone and mechanical properties of rectus femoris and biceps femoris using a novel hand held MyotonPRO device: relative ratios and reliability. Working Papers in Health Sciences. 2012;1(1):18.

    • Search Google Scholar
    • Export Citation
  • 14.

    Colomar J, Corbi F, Baiget E. Inter-limb muscle property differences in junior tennis players. J Hum Kinet. 2022;82:515. PubMed ID: 36196339 doi:10.2478/hukin-2022-0026

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Meerits T, Bacchieri S, Pääsuke M, Ereline J, Cicchella A, Gapeyeva H. Acute effect of static and dynamic stretching on tone and elasticity of hamstring muscles and on vertical jump performance in track-and-field athletes. Acta Kinesiol Univ Tartu. 2014;20:4859. doi:10.12697/akut.2014.20.05

    • Search Google Scholar
    • Export Citation
  • 16.

    Martín-San Agustín R, Benítez-Martínez JC, Castillo-Ballesta L, Gacto-Sánchez M, Medina-Mirapeix F. Validity, reliability, and sensitivity to change of DiCI for the strength measurement of knee and hip muscles. Meas Phys Educ Exerc Sci. 2020;24(4):303311. doi:10.1080/1091367X.2020.1822363

    • Search Google Scholar
    • Export Citation
  • 17.

    Martins J, da Silva JR, da Silva MRB, Bevilaqua-Grossi D. Reliability and validity of the belt-stabilized handheld dynamometer in hip- and knee-strength tests. J Athl Train. 2017;52(9):809819. PubMed ID: 28787180 doi:10.4085/1062-6050-52.6.04

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Mentiplay BF, Perraton LG, Bower KJ, et al. Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: a reliability and validity study. PLoS One. 2015;10(10):e0140822. doi:10.1371/journal.pone.0140822

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Muff G, Dufour S, Meyer A, et al. Comparative assessment of knee extensor and flexor muscle strength measured using a hand-held vs. isokinetic dynamometer. J Phys Ther Sci. 2016;28(9):24452451. PubMed ID: 27799667 doi:10.1589/jpts.28.2445

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Yamauchi K, Someya K, Kato C, Kato T. The relationship between quadriceps femoris muscle function and MRI-derived water diffusion and adipose tissue measurements in young healthy males. J Magn Reson Imaging. Published online 2022. https://onlinelibrary.wiley.com/doi/10.1002/jmri.28525

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Steyerberg EW, Eijkemans MJ, Harrell FE, Habbema JD. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. Med Decis Mak Int J Soc Med Decis Mak. 2001;21(1):4556. doi:10.1177/0272989X0102100106

    • Search Google Scholar
    • Export Citation
  • 22.

    Toskić L, Dopsaj M, Stanković V, Marković M. Concurrent and predictive validity of isokinetic dynamometry and tensiomyography in differently trained women and men. Isokinet Exerc Sci. 2019;27(1):3139. doi:10.3233/IES-185152

    • Search Google Scholar
    • Export Citation
  • 23.

    Skrzek A, Ignasiak Z, Kozieł S, Sławińska T, Rożek K. Differences in muscle strength depend on age, gender and muscle functions. Isokinet Exerc Sci. 2012;20(3):229235. doi:10.3233/IES-2012-0464

    • Search Google Scholar
    • Export Citation
  • 24.

    Thompson C, Dalgleish L, Bucknall T, et al. The effects of time pressure and experience on nurses’ risk assessment decisions: a signal detection analysis. Nurs Res. 2008;57(5):302311. PubMed ID: 18794714 doi:10.1097/01.NNR.0000313504.37970.f9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    von dem Knesebeck O, Koens S, Marx G, Scherer M. Perceptions of time constraints among primary care physicians in Germany. BMC Fam Pract. 2019;20(1):142. PubMed ID: 31640573 doi:10.1186/s12875-019-1033-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Wandling BJ, Smith BS. Burnout in orthopaedic physical therapists. J Orthop Sports Phys Ther. 1997;26(3):124130. PubMed ID: 9276852 doi:10.2519/jospt.1997.26.3.124

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression analyses. J Clin Epidemiol. 2015;68(6):627636. PubMed ID: 25704724 doi:10.1016/j.jclinepi.2014.12.014

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3123 2779 134
Full Text Views 143 134 0
PDF Downloads 81 67 0