Infrared Thermography—A Novel Tool for Monitoring Fracture Healing: A Critically Appraised Topic With Evidence-Based Recommendations for Clinical Practice

Click name to view affiliation

Tristan Castonguay Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada

Search for other papers by Tristan Castonguay in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3665-9443 *
and
Geoff Dover Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, QC, Canada
PERFORM Centre, Concordia University, CRIR—Centre de Réadaptation Constance-Lethbridge du CIUSSS COMLT, Montreal, QC, Canada

Search for other papers by Geoff Dover in
Current site
Google Scholar
PubMed
Close
Restricted access

Clinical Scenario: Stress fractures are one of the most common injuries in athletes. Unfortunately, they are hard to diagnose, require multiple radiology exams and follow-up which leads to more exposure to radiation and an increase in cost. Stress fractures that are mismanaged can lead to serious complications and poorer outcomes for the athlete. During the rehabilitation process, it would be beneficial to be able to monitor the healing of fractures to know when it is safe to gradually allow a patient to a return to sport because the return to activity is not usually objective and based on pain level. Clinical Question: Can infrared thermography (IRT) be a useful tool to measure the pathophysiological state of the fracture healing? The aim of this critically appraised topic is to analyze the current evidence of IRT for measuring the temperature change in fractures to provide recommendations for medical practitioners. Summary of Key Findings: For this critically appraised topic, we examined 3 articles that compared medical imaging and IRT over multiple time points during the follow-up. The 3 articles concluded that a 1 °C asymmetry in temperature followed by a return to normal (less than 0.3 °C) temperature during the healing process of fractures can be monitored using IRT. Clinical Bottom Line: Once the patient has been diagnosed with a fracture, IRT can safely be used to monitor the evolution of a fracture. When the thermogram progresses from a hot thermogram to a cold thermogram, the healing is considered good enough to return to sport. Strength of Recommendation: Grade 2 evidence exists to support IRT being used by clinicians to monitor fracture healing. Due to the limited research and novelty of the technology, the current recommendations are for following the treatment of the fracture once the initial diagnosis is made.

Infrared thermography is precise enough to monitor the healing process of fractures.

Infrared thermography is a useful tool for clinicians who want an objective measure of the readiness of a patient to resume physical activity.

Following a fracture, the initial thermal asymmetry is approximatively 1 °C and will return to symmetry once healing of the bone is achieved.

  • Collapse
  • Expand
  • 1.

    Brudvig TJS, Gudger TD, Obermeyer L. Stress fractures in 295 trainees: a one-year study of incidence as related to age, sex, and race. Mil Med. 1983;148(8):666667. doi:10.1093/milmed/148.8.666

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Wright AA, Hegedus EJ, Lenchik L, Kuhn KJ, Santiago L, Smoliga JM. Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med. 2016;44(1):255263. doi:10.1177/0363546515574066

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD. The incidence and distribution of stress fractures in competitive track and field athletes: a twelve-month prospective study. Am J Sports Med. 1996;24(2):211217. doi:10.1177/036354659602400217

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Reed CL, Saatchi R, Ramlakhan S. Infrared thermal imaging for bone fracture identification and monitoring of fracture healing: a review of the latest developments. Paper presented at: USB Proceedings of the Seventeenth International Conference on Condition Monitoring and Asset Management; 2021; Jun 14–18; (London, UK):9.

    • Search Google Scholar
    • Export Citation
  • 5.

    Moran DS, Evans RK, Hadad E. Imaging of lower extremity stress fracture injuries. Sports Med. 2008;38(4):345356. doi:10.2165/00007256-200838040-00005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Arthur DTJ, Khan MM, Barclay LC. Thermographic investigation of osseous stress pathology. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2011:62506253. doi:10.1109/IEMBS.2011.6091543

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Strasse W, Campos DP, Mendonça CJA, Soni JF, Mendes J, Nohama P. Evaluation of tibia bone healing by infrared thermography: a case study. J Multidiscip Healthc. 2021;14:31613175. doi:10.2147/JMDH.S330094

    • Search Google Scholar
    • Export Citation
  • 8.

    Ring EFJ, Ammer K. Infrared thermal imaging in medicine. Physiol Meas. 2012;33(3):R33R46. doi:10.1088/0967-3334/33/3/R33

  • 9.

    Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J, et al. Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys Technol. 2015;71:2855. doi:10.1016/j.infrared.2015.02.007

    • Search Google Scholar
    • Export Citation
  • 10.

    Viegas F, Mello MT, Rodrigues SA, et al. The use of thermography and its control variables: a systematic review. Rev Bras Med Esporte. 2020;26(1):8286. doi:10.1590/1517-869220202601217833

    • Search Google Scholar
    • Export Citation
  • 11.

    Ćurković S, Antabak A, Halužan D, Luetić T, Prlić I, Šiško J. Medical thermography (digital infrared thermal imaging—DITI) in paediatric forearm fractures—a pilot study. Injury. 2015;46:S36S39. doi:10.1016/j.injury.2015.10.044

    • Search Google Scholar
    • Export Citation
  • 12.

    Nola IA, Gotovac K, Kolari D. Thermography in biomedicine—specific requirements. Paper presented at: Conference ELMAR; 2012; Sept 12–14; (Zadar, Croatia):4.

    • Search Google Scholar
    • Export Citation
  • 13.

    Vardasca R, Magalhaes C, Silva P, Abreu P, Mendes J, Restivo MT. Biomedical musculoskeletal applications of infrared thermal imaging on arm and forearm: a systematic review. J Therm Biol. 2019;82:164177. doi:10.1016/j.jtherbio.2019.04.008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Haluzan D, Davila S, Antabak A, et al. Thermal changes during healing of distal radius fractures—preliminary findings. Injury. 2015;46:S103S106. doi:10.1016/j.injury.2015.10.046

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Harwood PJ, Newman JB, Michael AL. An update on fracture healing and non-union. Orthop Trauma. 2010;24(1):15.

  • 16.

    Carano RAD, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today. 2003;8(21):980989. doi:10.1016/S1359-6446(03)02866-6

  • 17.

    Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH, Giannoudis PV. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury. 2008;39:S45S57. doi:10.1016/S0020-1383(08)70015-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551555. doi:10.1016/j.injury.2011.03.031

  • 19.

    Grundnes O, Reikerås O. Blood flow and mechanical properties of healing bone: femoral osteotomies studied in rats. Acta Orthop Scand. 1992;63(5):487491. doi:10.3109/17453679209154720

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kahanov L, Eberman L, Games K, Wasik M. Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners. Open Access J Sports Med. 2015;6:8795. doi:10.2147/OAJSM.S39512

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Arendt E, Agel J, Heikes C, Griffiths H. Stress injuries to bone in college athletes: a retrospective review of experience at a single institution. Am J Sports Med. 2003;31(6):959968. doi:10.1177/03635465030310063601

    • Search Google Scholar
    • Export Citation
  • 22.

    Oxford University. Oxford centre for evidence-based medicine: levels of evidence. 2009. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009

    • Search Google Scholar
    • Export Citation
  • 23.

    Goodman PH, Heaslet MW, Pagliano JW, Rubin BD. Stress fracture diagnosis by computer-assisted thermography. Phys Sportsmed. 1985;13(4):114132. doi:10.1080/00913847.1985.11708772

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Morasiewicz L, Dudek K, Orzechowski W, Kulej M, Stepniewski M. Use of thermography to monitor the bone regenerate during limb lengthening preliminary communication. Ortop Traumatol Rehabil. 2008;10(3):279285. PubMed ID: 18552765

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Strasse WAUF, Campos DP, Mendonça CJA, et al. Evaluating physiological progression of chronic tibial osteomyelitis using infrared thermography. Res Biomed Eng. 2022;38(2):228. doi:10.1007/s42600-022-00228-w

    • Search Google Scholar
    • Export Citation
  • 26.

    Devereaux MD, Parr GR, Lachmann SM, Page-Thomas P, Hazleman BL. The diagnosis of stress fractures in athletes. JAMA. 1984;252(4):531533. doi:10.1001/jama.1984.03350040061027

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Strasse WAUF, Campos DP, Mendonça CJA, Soni JF, Mendes J, Nohama P. Detecting bone lesions in the emergency room with medical infrared thermography. Biomed Eng Online. 2022;21(1):35. doi:10.1186/s12938-022-01005-7

    • Search Google Scholar
    • Export Citation
  • 28.

    Vardasca R, Ring F, Plassmann P, Jone C. Termal symmetry of the upper and lower extremities in healthy subjects. Thermol Int. 2012;22(2):5360.

    • Search Google Scholar
    • Export Citation
  • 29.

    Halaska C, Sachs P, Sanfilippo K, Lin CT. Patient attitudes about viewing their radiology images online: preintervention survey. J Med Internet Res. 2019;21(7):e12595. doi:10.2196/12595

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Carlin LE, Smith HE, Henwood F. To see or not to see: a qualitative interview study of patients’ views on their own diagnostic images. BMJ Open. 2014;4(7):e004999. doi:10.1136/bmjopen-2014-004999

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Pahade JK, Trout AT, Zhang B, et al. What patients want to know about imaging examinations: a multiinstitutional U.S. survey in adult and pediatric teaching hospitals on patient preferences for receiving information before radiologic examinations. Radiology. 2018;287(2):554562. doi:10.1148/radiol.2017170592

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Fazzalari NL. Bone fracture and bone fracture repair. Osteoporos Int. 2011;22(6):20032006. doi:10.1007/s00198-011-1611-4

  • 33.

    Côrte ACR, Hernandez AJ. Termografia médica infravermelha aplicada à medicina do esporte. Rev Bras Med Esporte. 2016;22(4):315319. doi:10.1590/1517-869220162204160783

    • Search Google Scholar
    • Export Citation
  • 34.

    Hildebrandt C, Zeilberger K, John Ring EF, Raschner C. The application of medical infrared thermography in sports medicine. In: Zaslav KR, ed. An International Perspective on Topics in Sports Medicine and Sports Injury. InTech; 2012. doi:10.5772/28383

    • Search Google Scholar
    • Export Citation
  • 35.

    Strasse WAD, Ranciaro M, De Oliveira KRG, et al. Thermography applied in the diagnostic assessment of bone fractures. Res Biomed Eng. 2022;38(2):733745. doi:10.1007/s42600-022-00206-2

    • Search Google Scholar
    • Export Citation
  • 36.

    Sanchis-Sánchez E, Vergara-Hernández C, Cibrián RM, Salvador R, Sanchis E, Codoñer-Franch P. Infrared thermal imaging in the diagnosis of musculoskeletal injuries: a systematic review and meta-analysis. Am J Roentgenol. 2014;203(4):875882. doi:10.2214/AJR.13.11716

    • Search Google Scholar
    • Export Citation
  • 37.

    Silva CT, Naveed N, Bokhari S, et al. Early assessment of the efficacy of digital infrared thermal imaging in pediatric extremity trauma. Emerg Radiol. 2012;19(3):203209. doi:10.1007/s10140-012-1027-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Sanchis-Sánchez E, Salvador-Palmer R, Codoñer-Franch P, et al. Infrared thermography is useful for ruling out fractures in paediatric emergencies. Eur J Pediatr. 2015;174(4):493499. doi:10.1007/s00431-014-2425-0

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1211 860 62
Full Text Views 142 123 1
PDF Downloads 72 45 1