The Effects of Attentional Focus on Brain Function During a Gross Motor Task

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context: Although the beneficial effects of using an external focus of attention are well documented in attainment and performance of movement execution, neural mechanisms underlying external focus’ benefits are mostly unknown. Objective: To assess brain function during a lower-extremity gross motor movement while manipulating an internal and external focus of attention. Design: Cross-over study. Setting: Neuroimaging center Participants: A total of 10 healthy subjects (5 males and 5 females) Intervention: Participants completed external and internal focus of attention unilateral left 45° knee extension/flexion movements at a rate of 1.2 Hz laying supine in a magnetic resonance imaging scanner for 4 blocks of 30 seconds interspersed with 30-second rest blocks. During the internal condition, participants were instructed to “squeeze their quadriceps.” During the external condition, participants were instructed to “focus on a target” positioned above their tibia. Main Outcome Measures: T1 brain structural imaging was performed for registration of the functional data. For each condition, 3T functional magnetic resonance imaging blood oxygenation level dependent data representing 90 whole-brain volumes were acquired. Results: During the external relative to internal condition, increased activation was detected in the right occipital pole, cuneal cortex, anterior portion of the lingual gyrus, and intracalcarine cortex (Zmax = 4.5–6.2, P < .001). During the internal relative to external condition, increased activation was detected in the left primary motor cortex, left supplementary motor cortex, and cerebellum (Zmax = 3.4–3.5, P < .001). Conclusions: Current results suggest that an external focus directed toward a visual target produces more brain activity in regions associated with vision and ventral streaming pathways, whereas an internal focus manipulated through instruction increases activation in brain regions that are responsible for motor control. Results from this study serve as baseline information for future prevention and rehabilitation investigations of how manipulating focus of attention can constructively affect neuroplasticity during training and rehabilitation.

Raisbeck and Schmitz are with the Department of Kinesiology, School of Health and Human Sciences, University of North Carolina at Greensboro, Greensboro, NC. Diekfuss is with the Division of Sports Medicine, The SPORT Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH. Grooms is with Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH; and the Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH.

Raisbeck (ldraisbe@uncg.edu) is corresponding author.
Journal of Sport Rehabilitation
Article Sections
References
  • 1.

    Beilock SLCarr THMacMahon CStarkes JL. When paying attention becomes counterproductive: impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. J Exp Psychol Appl. 2002;8(1):616. PubMed ID: 12009178 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gray R. Attending to the execution of a complex sensorimotor skill: expertise differences, choking, and slumps. J Exp Psychol Appl. 2004;10(1):4254. PubMed ID: 15053701 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Wulf G. Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exerc Psychol. 2013;6(1):77104. doi:

  • 4.

    Wulf GHöß MPrinz W. Instructions for motor learning: differential effects of internal versus external focus of attention. J Mot Behav. 1998;30(2):169179. PubMed ID: 20037032 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Diekfuss JARhea CKSchmitz RJet al. The influence of attentional focus on balance control over seven days of training. J Mot Behav. 2019;51(3):281292. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    McNevin NHShea CHWulf G. Increasing the distance of an external focus of attention enhances learning. Psychol Res. 2003;67(1):2229. PubMed ID: 12589447

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wulf GMcNevin NShea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A. 2001;54(4):11431154. PubMed ID: 11765737 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wulf GShea CPark J-H. Attention and motor performance: preferences for and advantages of an external focus. Res Q Exerc Sport. 2001;72(4):335344. PubMed ID: 11770783 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Benjaminse AGokeler ADowling AVet al. Optimization of the anterior cruciate ligament injury prevention paradigm: novel feedback techniques to enhance motor learning and reduce injury risk. J Orthop Sports Phys Ther. 2015;45(3):170182. PubMed ID: 25627151 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gokeler ABenjaminse AHewett TEet al. Feedback techniques to target functional deficits following anterior cruciate ligament reconstruction: implications for motor control and reduction of second injury risk. Sports Med. 2013;43(11):10651074. PubMed ID: 24062274 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ducharme SWWu WFWLim KPorter JMGeraldo F. Standing long jump performance with an external focus of attention is improved as a result of a more effective projection angle. J Strength Cond Res. 2016;30(1):276281. PubMed ID: 26691415 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gokeler ABenjaminse AWelling WAlferink MEppinga POtten B. The effects of attentional focus on jump performance and knee joint kinematics in patients after ACL reconstruction. Phys Ther Sport. 2015;16(2):114120. PubMed ID: 25443228 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Porter JMAnton PMWu WFW. Increasing the distance of an external focus of attention enhances standing long jump performance. J Strength Cond Res. 2012;26(9):23892393. PubMed ID: 22067252 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gottlieb J. Attention, learning, and the value of information. Neuron. 2012;76(2):281295. PubMed ID: 23083732 doi:

  • 15.

    Al-Abood SABennett SJHernandez FMAshford DDavids K. Effect of verbal instructions and image size on visual search strategies in basketball free throw shooting. J Sports Sci. 2002;20(3):271278. PubMed ID: 11999481 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Zentgraf KLorey BBischoff MZimmermann KStark RMunzert J. Neural correlates of attentional focusing during finger movements: a fMRI study. J Mot Behav. 2009;41(6):535541. PubMed ID: 19567364 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Raisbeck LDDiekfuss JA. Fine and gross motor skills: the effects on skill-focused dual-tasks. Hum Mov Sci. 2015;43:146154. PubMed ID: 26296039 doi:

  • 18.

    Knight HCSmith DTKnight DCEllison A. Altering attentional control settings causes persistent biases of visual attention. Q J Exp Psychol. 2016;69(1):129149. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Grooms DRPage SJOnate JA. Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athl Train. 2015;50(10):10051010. PubMed ID: 26509775 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kapreli EAthanasopoulos SPapathanasiou Met al. Lower limb sensorimotor network: issues of somatotopy and overlap. Cortex. 2007;43(2):219232. PubMed ID: 17405668 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Beilock SLCarr TH. On the fragility of skilled performance: what governs choking under pressure? J Exp Psychol Gen. 2001;130(4):701725. PubMed ID: 11757876 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Castaneda BGray R. Effects of focus of attention on baseball batting performance in players of differing skill levels. J Sport Exerc Psychol. 2007;29(1):6077. PubMed ID: 17556776 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Smith SMJenkinson MWoolrich MWet al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23:S208S219. PubMed ID: 15501092 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Jenkinson MBannister PBrady MSmith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17(2):825841. PubMed ID: 12377157 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143155. PubMed ID: 12391568 doi:

  • 26.

    Pruim RHRMennes Mvan Rooij DLlera ABuitelaar JKBeckmann CF. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage. 2015;112:267277. PubMed ID: 25770991 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pruim RHRMennes MBuitelaar JKBeckmann CF. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. NeuroImage. 2015;112:278287. PubMed ID: 25770990 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Beckmann CFJenkinson MSmith SM. General multilevel linear modeling for group analysis in FMRI. NeuroImage. 2003;20(2):10521063. PubMed ID: 14568475 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Woolrich MWRipley BDBrady MSmith SM. Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage. 2001;14(6):13701386. PubMed ID: 11707093 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Worsley KJ. Statistical analysis of activation images. In: Jezzard PMatthews PMSmith SM eds. Functional Magnetic Resonance Imaging. Oxford University Press; 2001:251270. http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780192630711.001.0001/acprof-9780192630711

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Woolrich M. Robust group analysis using outlier inference. NeuroImage. 2008;41(2):286301. PubMed ID: 18407525 doi:

  • 32.

    Epstein RKanwisher N. A cortical representation of the local visual environment. Nature. 1998;392(6676):598601. PubMed ID: 9560155 doi:

  • 33.

    Grill-Spector KKushnir THendler TEdelman SItzchak YMalach R. A sequence of object‐processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp. 1998;6(4):316328. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Winawer JHoriguchi HSayres RAAmano KWandell BA. Mapping hV4 and ventral occipital cortex: the venous eclipse. J Vis. 2010;10(5):11. PubMed ID: 20616143 doi:

  • 35.

    Tyler LKChiu SZhuang Jet al. Objects and categories: feature statistics and object processing in the ventral stream. J Cogn Neurosci. 2013;25(10):17231735. PubMed ID: 23662861 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bracci SCaramazza APeelen MV. Representational similarity of body parts in human occipitotemporal cortex. J Neurosci. 2015;35(38):1297712985. PubMed ID: 26400929 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Peelen MVCaramazza A. Conceptual object representations in human anterior temporal cortex. J Neurosci. 2012;32(45):1572815736. PubMed ID: 23136412 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Takahashi EOhki KMiyashita Y. The role of the parahippocampal gyrus in source memory for external and internal events. NeuroReport. 2002;13(15):19511956. PubMed ID: 12395098 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Rao SMBinder JRBandettini PAet al. Functional magnetic resonance imaging of complex human movements. Neurology. 1993;43(11):23112311. PubMed ID: 8232948 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Porro CACettolo VFrancescato MPet al. Functional activity mapping of the perirolandic cortex during motor performance and motor imagery. In: Pavone PRossi P eds.Functional MRI (Bracco Education in Diagnostic Imaging). Springer Milan; 1996:4951. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Da Costa Svan der Zwaag WMarques JPFrackowiak RSJClarke SSaenz M. Human primary auditory cortex follows the shape of Heschl’s Gyrus. J Neurosci. 2011;31(40):1406714075. PubMed ID: 21976491 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    O’Reilly JXBeckmann CFTomassini VRamnani NJohansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953965. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Allen GBuxton RBWong ECCourchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275(5308):19401943. PubMed ID: 9072973 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Desmond JEGabrieli JDWagner ADGinier BLGlover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):96759685. PubMed ID: 9391022 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Iidaka T. Role of the fusiform gyrus and superior temporal sulcus in face perception and recognition: an empirical review. Jpn Psychol Res. 2013;56(1):3345. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Kanwisher NYovel G. The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc Lond B Biol Sci. 2006;361(1476):21092128. PubMed ID: 17118927 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Diekfuss JAWard PRaisbeck LD. Attention, workload, and performance: a dual-task simulated shooting study. Int J Sport Exerc Psychol. 2016;15(4):423437. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Raisbeck LDSuss JDiekfuss JAPetushek EWard P. Skill-based changes in motor performance from attentional focus manipulations: a kinematic analysis. Ergonomics. 2016;59(7):941949.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Ille ASelin IDo M-CThon B. Attentional focus effects on sprint start performance as a function of skill level. J Sports Sci. 2013;31(15):17051712. PubMed ID: 23710928 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Porter JMWu WFCrossley RMKnopp SWCampbell OC. Adopting an external focus of attention improves sprinting performance in low-skilled sprinters. J Strength Cond Res. 2015;29(4):947953. PubMed ID: 25811269 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Vance JWulf GTöllner TMcNevin NMercer J. EMG activity as a function of the performer’s focus of attention. J Mot Behav. 2004;36(4):450459. PubMed ID: 15695233 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Grooms DRMyer GD. Upgraded hardware horizontal line—What about the software? Brain updates for return to play following ACL reconstruction. Br J Sports Med. 2017;51(5):418419. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 253 253 186
Full Text Views 25 25 15
PDF Downloads 16 16 11
Altmetric Badge
PubMed
Google Scholar