The Effects of Attentional Focus on Brain Function During a Gross Motor Task

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Although the beneficial effects of using an external focus of attention are well documented in attainment and performance of movement execution, neural mechanisms underlying external focus’ benefits are mostly unknown. Objective: To assess brain function during a lower-extremity gross motor movement while manipulating an internal and external focus of attention. Design: Cross-over study. Setting: Neuroimaging center Participants: A total of 10 healthy subjects (5 males and 5 females) Intervention: Participants completed external and internal focus of attention unilateral left 45° knee extension/flexion movements at a rate of 1.2 Hz laying supine in a magnetic resonance imaging scanner for 4 blocks of 30 seconds interspersed with 30-second rest blocks. During the internal condition, participants were instructed to “squeeze their quadriceps.” During the external condition, participants were instructed to “focus on a target” positioned above their tibia. Main Outcome Measures: T1 brain structural imaging was performed for registration of the functional data. For each condition, 3T functional magnetic resonance imaging blood oxygenation level dependent data representing 90 whole-brain volumes were acquired. Results: During the external relative to internal condition, increased activation was detected in the right occipital pole, cuneal cortex, anterior portion of the lingual gyrus, and intracalcarine cortex (Zmax = 4.5–6.2, P < .001). During the internal relative to external condition, increased activation was detected in the left primary motor cortex, left supplementary motor cortex, and cerebellum (Zmax = 3.4–3.5, P < .001). Conclusions: Current results suggest that an external focus directed toward a visual target produces more brain activity in regions associated with vision and ventral streaming pathways, whereas an internal focus manipulated through instruction increases activation in brain regions that are responsible for motor control. Results from this study serve as baseline information for future prevention and rehabilitation investigations of how manipulating focus of attention can constructively affect neuroplasticity during training and rehabilitation.

Raisbeck and Schmitz are with the Department of Kinesiology, School of Health and Human Sciences, University of North Carolina at Greensboro, Greensboro, NC. Diekfuss is with the Division of Sports Medicine, The SPORT Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH. Grooms is with Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH; and the Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH.

Raisbeck (ldraisbe@uncg.edu) is corresponding author.
  • 1.

    Beilock SL, Carr TH, MacMahon C, Starkes JL. When paying attention becomes counterproductive: impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. J Exp Psychol Appl. 2002;8(1):6–16. PubMed ID: 12009178 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gray R. Attending to the execution of a complex sensorimotor skill: expertise differences, choking, and slumps. J Exp Psychol Appl. 2004;10(1):42–54. PubMed ID: 15053701 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Wulf G. Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exerc Psychol. 2013;6(1):77–104. doi:

  • 4.

    Wulf G, Höß M, Prinz W. Instructions for motor learning: differential effects of internal versus external focus of attention. J Mot Behav. 1998;30(2):169–179. PubMed ID: 20037032 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Diekfuss JA, Rhea CK, Schmitz RJ, et al. The influence of attentional focus on balance control over seven days of training. J Mot Behav. 2019;51(3):281–292. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    McNevin NH, Shea CH, Wulf G. Increasing the distance of an external focus of attention enhances learning. Psychol Res. 2003;67(1):22–29. PubMed ID: 12589447

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A. 2001;54(4):1143–1154. PubMed ID: 11765737 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wulf G, Shea C, Park J-H. Attention and motor performance: preferences for and advantages of an external focus. Res Q Exerc Sport. 2001;72(4):335–344. PubMed ID: 11770783 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Benjaminse A, Gokeler A, Dowling AV, et al. Optimization of the anterior cruciate ligament injury prevention paradigm: novel feedback techniques to enhance motor learning and reduce injury risk. J Orthop Sports Phys Ther. 2015;45(3):170–182. PubMed ID: 25627151 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gokeler A, Benjaminse A, Hewett TE, et al. Feedback techniques to target functional deficits following anterior cruciate ligament reconstruction: implications for motor control and reduction of second injury risk. Sports Med. 2013;43(11):1065–1074. PubMed ID: 24062274 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ducharme SW, Wu WFW, Lim K, Porter JM, Geraldo F. Standing long jump performance with an external focus of attention is improved as a result of a more effective projection angle. J Strength Cond Res. 2016;30(1):276–281. PubMed ID: 26691415 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gokeler A, Benjaminse A, Welling W, Alferink M, Eppinga P, Otten B. The effects of attentional focus on jump performance and knee joint kinematics in patients after ACL reconstruction. Phys Ther Sport. 2015;16(2):114–120. PubMed ID: 25443228 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Porter JM, Anton PM, Wu WFW. Increasing the distance of an external focus of attention enhances standing long jump performance. J Strength Cond Res. 2012;26(9):2389–2393. PubMed ID: 22067252 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gottlieb J. Attention, learning, and the value of information. Neuron. 2012;76(2):281–295. PubMed ID: 23083732 doi:

  • 15.

    Al-Abood SA, Bennett SJ, Hernandez FM, Ashford D, Davids K. Effect of verbal instructions and image size on visual search strategies in basketball free throw shooting. J Sports Sci. 2002;20(3):271–278. PubMed ID: 11999481 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Zentgraf K, Lorey B, Bischoff M, Zimmermann K, Stark R, Munzert J. Neural correlates of attentional focusing during finger movements: a fMRI study. J Mot Behav. 2009;41(6):535–541. PubMed ID: 19567364 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Raisbeck LD, Diekfuss JA. Fine and gross motor skills: the effects on skill-focused dual-tasks. Hum Mov Sci. 2015;43:146–154. PubMed ID: 26296039 doi:

  • 18.

    Knight HC, Smith DT, Knight DC, Ellison A. Altering attentional control settings causes persistent biases of visual attention. Q J Exp Psychol. 2016;69(1):129–149. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Grooms DR, Page SJ, Onate JA. Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athl Train. 2015;50(10):1005–1010. PubMed ID: 26509775 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kapreli E, Athanasopoulos S, Papathanasiou M, et al. Lower limb sensorimotor network: issues of somatotopy and overlap. Cortex. 2007;43(2):219–232. PubMed ID: 17405668 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Beilock SL, Carr TH. On the fragility of skilled performance: what governs choking under pressure? J Exp Psychol Gen. 2001;130(4):701–725. PubMed ID: 11757876 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Castaneda B, Gray R. Effects of focus of attention on baseball batting performance in players of differing skill levels. J Sport Exerc Psychol. 2007;29(1):60–77. PubMed ID: 17556776 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23:S208–S219. PubMed ID: 15501092 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17(2):825–841. PubMed ID: 12377157 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143–155. PubMed ID: 12391568 doi:

  • 26.

    Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage. 2015;112:267–277. PubMed ID: 25770991 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pruim RHR, Mennes M, Buitelaar JK, Beckmann CF. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. NeuroImage. 2015;112:278–287. PubMed ID: 25770990 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Beckmann CF, Jenkinson M, Smith SM. General multilevel linear modeling for group analysis in FMRI. NeuroImage. 2003;20(2):1052–1063. PubMed ID: 14568475 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Woolrich MW, Ripley BD, Brady M, Smith SM. Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage. 2001;14(6):1370–1386. PubMed ID: 11707093 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Worsley KJ. Statistical analysis of activation images. In: Jezzard P, Matthews PM, Smith SM eds. Functional Magnetic Resonance Imaging. Oxford University Press; 2001:251–270. http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780192630711.001.0001/acprof-9780192630711

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Woolrich M. Robust group analysis using outlier inference. NeuroImage. 2008;41(2):286–301. PubMed ID: 18407525 doi:

  • 32.

    Epstein R, Kanwisher N. A cortical representation of the local visual environment. Nature. 1998;392(6676):598–601. PubMed ID: 9560155 doi:

  • 33.

    Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y, Malach R. A sequence of object‐processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp. 1998;6(4):316–328. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Winawer J, Horiguchi H, Sayres RA, Amano K, Wandell BA. Mapping hV4 and ventral occipital cortex: the venous eclipse. J Vis. 2010;10(5):1–1. PubMed ID: 20616143 doi:

  • 35.

    Tyler LK, Chiu S, Zhuang J, et al. Objects and categories: feature statistics and object processing in the ventral stream. J Cogn Neurosci. 2013;25(10):1723–1735. PubMed ID: 23662861 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bracci S, Caramazza A, Peelen MV. Representational similarity of body parts in human occipitotemporal cortex. J Neurosci. 2015;35(38):12977–12985. PubMed ID: 26400929 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Peelen MV, Caramazza A. Conceptual object representations in human anterior temporal cortex. J Neurosci. 2012;32(45):15728–15736. PubMed ID: 23136412 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Takahashi E, Ohki K, Miyashita Y. The role of the parahippocampal gyrus in source memory for external and internal events. NeuroReport. 2002;13(15):1951–1956. PubMed ID: 12395098 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Rao SM, Binder JR, Bandettini PA, et al. Functional magnetic resonance imaging of complex human movements. Neurology. 1993;43(11):2311–2311. PubMed ID: 8232948 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Porro CA, Cettolo V, Francescato MP, et al. Functional activity mapping of the perirolandic cortex during motor performance and motor imagery. In: Pavone P, Rossi P eds.Functional MRI (Bracco Education in Diagnostic Imaging). Springer Milan; 1996:49–51. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Da Costa S, van der Zwaag W, Marques JP, Frackowiak RSJ, Clarke S, Saenz M. Human primary auditory cortex follows the shape of Heschl’s Gyrus. J Neurosci. 2011;31(40):14067–14075. PubMed ID: 21976491 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–965. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275(5308):1940–1943. PubMed ID: 9072973 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–9685. PubMed ID: 9391022 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Iidaka T. Role of the fusiform gyrus and superior temporal sulcus in face perception and recognition: an empirical review. Jpn Psychol Res. 2013;56(1):33–45. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Kanwisher N, Yovel G. The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc Lond B Biol Sci. 2006;361(1476):2109–2128. PubMed ID: 17118927 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Diekfuss JA, Ward P, Raisbeck LD. Attention, workload, and performance: a dual-task simulated shooting study. Int J Sport Exerc Psychol. 2016;15(4):423–437. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Raisbeck LD, Suss J, Diekfuss JA, Petushek E, Ward P. Skill-based changes in motor performance from attentional focus manipulations: a kinematic analysis. Ergonomics. 2016;59(7):941–949.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Ille A, Selin I, Do M-C, Thon B. Attentional focus effects on sprint start performance as a function of skill level. J Sports Sci. 2013;31(15):1705–1712. PubMed ID: 23710928 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Porter JM, Wu WF, Crossley RM, Knopp SW, Campbell OC. Adopting an external focus of attention improves sprinting performance in low-skilled sprinters. J Strength Cond Res. 2015;29(4):947–953. PubMed ID: 25811269 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Vance J, Wulf G, Töllner T, McNevin N, Mercer J. EMG activity as a function of the performer’s focus of attention. J Mot Behav. 2004;36(4):450–459. PubMed ID: 15695233 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Grooms DR, Myer GD. Upgraded hardware horizontal line—What about the software? Brain updates for return to play following ACL reconstruction. Br J Sports Med. 2017;51(5):418–419. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 405 405 47
Full Text Views 38 38 1
PDF Downloads 26 26 1