Acute Effects of Gastrocnemius/Soleus Self-Myofascial Release Versus Dynamic Stretching on Closed-Chain Dorsiflexion

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context: Limited ankle dorsiflexion (DF) range of motion has been correlated with decreased flexibility of the gastrocnemius/soleus complex. Decreased ankle DF range of motion can lead to an increase in lower-extremity injuries, for example, acute ankle sprains, Achilles tendinopathy. Objective: The purpose of this study was to determine whether a single application of the intervention to the gastrocnemius/soleus complex via multidirectional self-myofascial release using a foam roller, multiplanar dynamic stretch performed in downward dog, or a combination of both techniques acutely improved ankle DF. Design: Subjects were assigned to groups via random card selection. Investigators provided verbal cues as needed to yield correct performance of interventions. Both interventions were performed twice for 1 minute using a dynamic walking rest of 30.48 m at a self-selected pace between interventions. Statistical analyses were completed using a 1-way analysis of variance, at α level ≤ .05. Setting: A convenience sample study. Participants: A total of 42 asymptomatic physical therapy students (18 females and 24 males) with mean age of 26.12 (4.03) years volunteered to participate. Interventions: Multidirectional self-myofascial release using a foam roller, multiplanar dynamic stretch performed in downward dog, or a combination of both techniques. Main Outcome Measures: Weight-bearing right ankle DF measurements were recorded in centimeters using a forward lunge technique (intraclass correlation coefficient = .98, .97, and .96). Results: Data analysis revealed no significant difference between the 3 groups in all pre–post measurements (P = .82). Mean (SD) measurements from pretest to posttest for myofascial release, dynamic stretching, and combination interventions were 0.479 (0.7) cm, 0.700 (0.7) cm, and 0.907 (1.4) cm, respectively. Conclusion: Until further studies are conducted, the selection of technique to increase ankle DF range of motion should be based on each individual patient’s ability, preference, and response to treatment.

The authors are with Franklin Pierce University, Goodyear, AZ.

Somers (somersk@franklinpierce.edu) is corresponding author.
Journal of Sport Rehabilitation
Article Sections
References
  • 1.

    Dill KEBegalle RLFrank BSZinder SMPadua DA. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion. J Athl Train. 2014;49(8):723732. doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Rabin APortnoy SKozol Z. The association of ankle dorsiflexion range of motion with hip and knee kinematics during the lateral step-down test. J Orthop Sports Phys Ther. 2016;46(11):10021009. PubMed ID: 27686412 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Malliaras PCook JLKent P. Reduced ankle dorsiflexion range may increase the risk of patellar tendon injury among volleyball players. J Sci Med Sport. 2006;9(4):304309. PubMed ID: 16672192 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Tabrizi PMcintyre WMQuesne MBHoward AW. Limited dorsiflexion predisposes to injuries of the ankle in children. J Bone Joint Surg Br. 2000;82(8):11031106. PubMed ID: 11132266 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Rabin AKozol ZFinestone AS. Limited ankle dorsiflexion increases the risk for mid-portion Achilles tendinopathy in infantry recruits: a prospective cohort study. J Foot Ankle Res. 2014;7:48. PubMed ID: 25426172 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Liu RWXie KK. Association between Achilles tightness and lower extremity injury in children. HSS Journal. 2016;12(3):245249. PubMed ID: 27703418 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hoch MCFarwell KEGaven SLWeinhandl JT. Weight-bearing dorsiflexion range of motion and landing biomechanics in individuals with chronic ankle instability. J Athl Train. 2015;50(8):833839. PubMed ID: 26067428 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hall CNester CJ. Sagittal plane compensations for artificially induced limitation of the first metatarsophalangeal joint. J Am Podiatr Med Assoc. 2004;94(3):269274. PubMed ID: 15153589 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Malloy PMeinerz CGeiser CKipp K. The association of dorsiflexion flexibility on landing mechanics during a drop vertical jump. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):35503555. PubMed ID: 25112598 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mason-Mackay AWhatman CReid D. The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: a systematic review. J Sci Med Sport. 2017;20(5):451458. PubMed ID: 26117159 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lima YLAlmeida MBde Oliveira RRde Paula Lima POLeão GP. The effect of ankle dorsiflexion range of motion in dynamic knee valgus: a systematic review. Phys Ther Sport. 2016;18:23. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Grindstaff TLDolan NMorton SK. Ankle dorsiflexion range of motion influences lateral step down test scores in individuals with chronic ankle instability. Phys Ther Sport. 2017;23:7581. PubMed ID: 27662790 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Morse CIDegens HSeynnes ORMaganaris CNJones DA. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol. 2008;586(1):97106. PubMed ID: 17884924 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    MacDonald GZPenney MDHMullaley MEet al. An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. J Strength Cond Res. 2013;27(3):812821. PubMed ID: 22580977 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Radford JABurns JBuchbinder RLandorf KBCook C. Does stretching increase ankle dorsiflexion range of motion? A systematic review. Br J Sports Med. 2006;40(10):870875. PubMed ID: 16926259 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Grieve RClark JPearson EBullock SBoyer CJarrett A. The immediate effect of soleus trigger point pressure release on restricted ankle joint dorsiflexion: a pilot randomized controlled trial. J Bodyw Mov Ther. 2011;15(1):4249. PubMed ID: 21147417 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Mauntel TCClark MAPadua DA. Effectiveness of myofascial release therapies on physical performance measurements: a systematic review. Athl Train Sports Health Care. 2014;6(4):189196. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kelly SBeardsley C. Specific and cross-over effects of foam rolling on ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2016;11(4):544551. PubMed ID: 27525179

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Beardsley CŠkarabot J. Effects of self-myofascial release: a systematic review. J Bodyw Mov Ther. 2015;19(4):747758. PubMed ID: 26592233 doi:

  • 20.

    Monteiro ECavanaugh MFrost DNovaes J. Is self-massage an effective joint range-of-motion strategy? A pilot study. J Bodyw Mov Ther. 2017;21(1):223226. PubMed ID: 28167184 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Aguilar AJDistefano LJBrown CNHerman DCGuskiewicz KMPadua DA. A dynamic warm-up model increases quadriceps strength and hamstring flexibility. J Strength Cond Res. 2012;26(4):11301141. PubMed ID: 22446678 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Samukawa MHattori MSugama NTakeda N. The effects of dynamic stretching on plantar flexor muscle-tendon tissue properties. Man Ther. 2011;16(6):618622. PubMed ID: 21813313 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jeon IKwon OYi CCynn HHwang U. Ankle-dorsiflexion range of motion after ankle self-stretching using a strap. J Athl Train. 2015;50(12):12261232. PubMed ID: 26633750 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mizuno T. Changes in joint range of motion and muscle-tendon unit stiffness after varying amounts of dynamic stretching. J Sports Sci. 2017;35(21):21572163. PubMed ID: 27892823 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Su HChang NJWu WLGuo LYChu IH. Acute effects of foam rolling, static stretching, and dynamic stretching during warm-ups on muscular flexibility and strength in young adults. J Sport Rehabil. 2017;26(6):469477. PubMed ID: 27736289 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Behara BJacobson B. Acute effects of deep tissue foam rolling and dynamic stretching on muscular strength, power, and flexibility in Division I linemen. J Strength Cond Res. 2017;31(4):888892. PubMed ID: 26121431 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Škarabot JBeardsley CStirn I. Comparing the effects of self-myofascial release with static stretching on ankle range-of-motion in adolescent athletes. Int J Sports Phys Ther. 2015;10(2):203212. PubMed ID: 25883869

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    O’shea SGrafton K. The intra and inter-rater reliability of a modified weight-bearing lunge measure of ankle dorsiflexion. Man Ther. 2013;18(3):264268. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Powden CJHoch JMHoch MC. Reliability and minimal detectable change of the weight-bearing lunge test: a systematic review. Man Ther. 2015;20(4):524532. PubMed ID: 25704110 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Baumbach SFBraunstein MSeeliger FBorgmann LBöcker WPolzer H. Ankle dorsiflexion: what is normal? Development of a decision pathway for diagnosing impaired ankle dorsiflexion and M. gastrocnemius tightness. Arch Orthop Trauma Surg. 2016;136(9):12031211. PubMed ID: 27418341 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Koner MMorton SEckerson JMGrindstaff TL. Reliability of three measures of ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2012;7(3):279287.

    • Search Google Scholar
    • Export Citation
  • 32.

    Freitas SAndrade RNordez AMendes BMil-Homens P. Acute muscle and joint mechanical responses following a high-intensity stretching protocol. Eur J Appl Physiol. 2016;116(8):15191526. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Terada MPietrosimone BGGribble PA. Therapeutic interventions for increasing ankle dorsiflexion after ankle sprain: a systematic review. J Athl Train. 2013;48(5):696709. PubMed ID: 23914912 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Driller MWOvermayer RG. The effects of tissue flossing on ankle range of motion and jump performance. Phys Ther Sport. 2017;25:2024. PubMed ID: 28254581 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Martin DLDavenport TSReischl SFet al. Heel pain-plantar fasciitis: revision 2014. J Orthop Sports Phys Ther. 2014;44(11):A1A23. PubMed ID: 25361863 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Page P. Current concepts in muscle stretching for exercise and rehabilitation. Int J Sports Phys Ther. 2012;7(1):109119. PubMed ID: 22319684

Article Metrics
All Time Past Year Past 30 Days
Abstract Views 373 373 108
Full Text Views 39 39 11
PDF Downloads 12 12 1
Altmetric Badge
PubMed
Google Scholar
Cited By