Are Body Composition, Strength, and Functional Independence Similarities Between Spinal Cord Injury Classifications? A Discriminant Analysis

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: There seems to be no consensus on which aspects better distinguish the different levels of spinal cord injury regarding body composition, strength, and functional independence. Objective: The study aimed to determine which variables better differentiate tetraplegia (TP) from paraplegia and high paraplegia (HP) from low paraplegia (LP). Design: Cross-sectional study. Setting: Rehabilitation hospital network. Patients: Forty-five men with spinal cord injury, n = 15 for each level (TP, HP, and LP) causing complete motor impairment (American Spinal Injury Association Impairment Scale: A or B) were enrolled in the study. Main Outcome Measures: The 1-maximum repetition test, functional independence measure, spinal cord independence measure, and body composition (skinfold sum, body fat percentage, and body mass index) were assessed. Discriminant analysis was carried out using the Wilks lambda method to identify which strength and functional variables can significantly discriminate subjects for injury classification (TP, HP, and LP). Results: The discriminant variable for TP versus HP was body mass index and for TP versus LP was 1-maximum repetition (P ≤ .05). There were no variables that discriminated HP versus LP. Conclusions: The discriminant variables for TP versus HP and TP versus LP were body mass index and 1-maximum repetition, respectively. The results showed that HP and LP are similar for strength and functional variables.

Gomes Costa and Ribeiro Neto are with Spinal Cord Injury Rehabilitation Program, Sarah Rehabilitation Hospital Network, Brasília, Brazil. Carregaro is with the School of Physical Therapy, Campus UnB Ceilândia, Universidade de Brasília (UnB), Brasília, Brazil.

Gomes Costa (rodrigorodrigues1@gmail.com) is corresponding author.
  • 1.

    Kirshblum SC, Burns SP, Biering-Sorensen F, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34(6):535–546. PubMed ID: 22330108 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kirshblum SC, Waring W, Biering-Sorensen F, et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2011;34(6):547–554. PubMed ID: 22330109 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Popa C, Popa F, Grigorean VT, et al. Vascular dysfunctions following spinal cord injury. J Med Life. 2010;3(3):275–285. PubMed ID: 20945818

  • 4.

    Serra-Ano P, Pellicer-Chenoll M, Garcia-Masso X, Brizuela G, Garcia-Lucerga C, Gonzalez LM. Sitting balance and limits of stability in persons with paraplegia. Spinal Cord. 2013;51(4):267–272. PubMed ID: 23184029 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Coutinho AC, Neto F, Beraldo PS. Validity of heart rate indexes to assess wheeling efficiency in patients with spinal cord injuries. Spinal Cord. 2014;52(9):677–682. PubMed ID: 25000953 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hicks A, Ginis KM, Pelletier C, Ditor D, Foulon B, Wolfe D. The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: a systematic review. Spinal Cord. 2011;49(11):1103–1127. PubMed ID: 21647163 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Souza AL, Boninger ML, Fitzgerald SG, Shimada SD, Cooper RA, Ambrosio F. Upper limb strength in individuals with spinal cord injury who use manual wheelchairs. J Spinal Cord Med. 2005;28(1):26–32. PubMed ID: 15832901 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bernard PL, Codine P, Minier J. Isokinetic shoulder rotator muscles in wheelchair athletes. Spinal Cord. 2004;42(4):222–229. PubMed ID: 15060519 doi:

  • 9.

    Ribeiro FN, Lopes GH. Body composition modifications in people with chronic spinal cord injury after supervised physical activity. J Spinal Cord Med. 2011;34(6):586–593. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Dionyssiotis Y, Trovas G, Galanos A, et al. Bone loss and mechanical properties of tibia in spinal cord injured men. J Musc Neur Int. 2007;7(1):62–68. PubMed ID: 17396008

    • Search Google Scholar
    • Export Citation
  • 11.

    Rosado-Rivera D, Radulovic M, Handrakis JP, et al. Comparison of 24-hour cardiovascular and autonomic function in paraplegia, tetraplegia, and control groups: implications for cardiovascular risk. J Spinal Cord Med. 2011;34(4):395–403. PubMed ID: 21903013 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Coutinho AC, Neto FR, Perna CE. Determination of normative values for 20 min exercise of wheelchair propulsion by spinal cord injury patients. Spinal Cord. 2013;51(10):755–760. PubMed ID: 24042996 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cowan RE, Nash MS, de Groot S, van der Woude LH. Adapted manual wheelchair circuit: test-retest reliability and discriminative validity in persons with spinal cord injury. Arch Phys Med Rehabil. 2011;92(8):1270–1280. PubMed ID: 21807146 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Mulroy SJ, Farrokhi S, Newsam CJ, Perry J. Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study. Arch Phys Med Rehabil. 2004;85(6):925–934. PubMed ID: 15179646 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Marôco J. Análise Estatística com o SPSS Statistics. 6th ed. Pero Pinheiro, Portugal: ReportNumber, Lda; 2014.

  • 16.

    Von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med. 2007;4(10):296. PubMed ID: 17941714 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Riberto M, Miyazaki MH, Jucá SSH, et al. Validation of the Brazilian version of functional independence measure. Acta Fisiatr. 2004;11(2):72–76.

    • Search Google Scholar
    • Export Citation
  • 18.

    Riberto M, Tavares DA, Rimoli JR, et al. Validation of the Brazilian version of the spinal cord independence measure III. Arq Neuro. 2014;72(6):439–444. PubMed ID: 24964111

    • Search Google Scholar
    • Export Citation
  • 19.

    Ilha J, Avila LCM, do Espírito Santo CC, Swarowsky A. Tradução e adaptação transcultural da versão brasileira da Spinal Cord Independence Measure–Self-Reported version (brSCIM-SR). Revista Brasileira de Neurologia. 2016;52(1): 2–17.

    • Search Google Scholar
    • Export Citation
  • 20.

    Maggioni M, Bertoli S, Margonato V, Merati G, Veicsteinas A, Testolin G. Body composition assessment in spinal cord injury subjects. Acta Diabetologica. 2003;40(suppl 1):S183–186. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bulbulian R, Johnson RE, Gruber JJ, Darabos B. Body composition in paraplegic male athletes. Med Sci Sports Exerc. 1987;19(3):195–201. PubMed ID: 3600232 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Desport J, Preux P, Guinvarc’h S, et al. Total body water and percentage fat mass measurements using bioelectrical impedance analysis and anthropometry in spinal cord-injured patients. Clin Nutr. 2000;19(3):185–190. PubMed ID: 10895109 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Abadie Ben R, Altorfer GL, Schuler PB. Does a regression equation to predict maximal strength in untrained lifters remain valid when the subjects are technique trained? J Strength Cond Res. 1999;13(3):259.

    • Search Google Scholar
    • Export Citation
  • 24.

    Dias RMR, Cyrino ES, Salvador EP, et al. Influência do processo de familiarização para avaliação da força muscular em testes de 1-RM. Rev Bras Med Esporte. 2005;11(1):34–38. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Thompson WR, Gordon NF, Pescatello LS. ACSM’s Guidelines for Exercise Testing and Prescription. 8th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2009.

    • Search Google Scholar
    • Export Citation
  • 26.

    Dwyer GB, Davis SE, Pire NI, Thompson WR. ACSM’s Health-Related Physical Fitness Assessment Manual. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2010.

    • Search Google Scholar
    • Export Citation
  • 27.

    Brown LE, Weir JP. ASEP procedures recommendation I: accurate assessment of muscular strength and power. J Exerc Physiol. 2001;4(3):1–21.

    • Search Google Scholar
    • Export Citation
  • 28.

    Kim PS, Mayhew JL, Peterson DF. A modified YMCA bench press test as a predictor of 1 repetition maximum bench press strength. J Strength Cond Res. 2002;16(3):440–445. PubMed ID: 12173960

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    ACSM. ACSM’s Guidelines for Exercise Testing and Prescription. 8th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2009.

  • 30.

    Tabachnick BG, Fidell LS. Using Multivariate Statistics. Boston, MA: Allyn & Bacon/Pearson Education; 2007.

  • 31.

    Powers CM, Newsam CJ, Gronley JK, Fontaine CA, Perry J. Isometric shoulder torque in subjects with spinal cord injury. Arch Phys Med Rehabil. 1994;75(7):761–765. PubMed ID: 8024421

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Aidinoff E, Front L, Itzkovich M, et al. Expected spinal cord independence measure, third version, scores for various neurological levels after complete spinal cord lesions. Spinal Cord. 2011;49(8):893–896. PubMed ID: 21483443 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    van Hedel HJ, Curt A. Fighting for each segment: estimating the clinical value of cervical and thoracic segments in SCI. J Neurotrauma. 2006;23(11):1621–1631. PubMed ID: 17115909 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Barbetta DC, Cassemiro LC, Assis MR. The experience of using the scale of functional independence measure in individuals undergoing spinal cord injury rehabilitation in Brazil. Spinal Cord. 2014;52(4):276–281. PubMed ID: 24492639 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Middleton JW, Truman G, Geraghty TJ. Neurological level effect on the discharge functional status of spinal cord injured persons after rehabilitation. Arch Phys Med Rehabil. 1998;79(11):1428–1432. PubMed ID: 9821905 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Gupta N, White KT, Sandford PR. Body mass index in spinal cord injury—a retrospective study. Spinal Cord. 2006;44(2):92–94. PubMed ID: 16030513 doi:

  • 37.

    Han SH, Lee BS, Choi HS, et al. Comparison of fat mass percentage and body mass index in Koreans with spinal cord injury according to the severity and duration of motor paralysis. Ann Rehabil Med. 2015;39(3):384–392. PubMed ID: 26161344 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Singh R, Rohilla RK, Saini G, Kaur K. Longitudinal study of body composition in spinal cord injury patients. Indian J Orthop. 2014;48(2):168–177. PubMed ID: 24741139 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Gorgey AS, Gater DR. Regional and relative adiposity patterns in relation to carbohydrate and lipid metabolism in men with spinal cord injury. Appl Physiol Nutr Metab. 2011;36(1):107–114. PubMed ID: 21326384 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 11 11 11
Full Text Views 0 0 0
PDF Downloads 0 0 0