Influence of Shoulder Position on Functional Control Ratio During Isokinetic Assessment

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context: One of the possible mechanisms leading to secondary impingement syndrome may be the strength imbalance of shoulder rotators which is known as functional control ratio (FCR). The FCR is a ratio dividing the eccentric peak torque of the external rotators by the concentric peak torque of the internal rotators. Previous studies have focused on the reproducibility and reliability of isokinetic assessment, but there is little information on the influence of variable shoulder positions on FCR. Objective: To compare shoulder FCR across 3 different shoulder abduction positions during isokinetic assessment. Design: Cross-sectional study. Setting: Biomechanics laboratory. Participants: Thirty-one healthy young university students (age 22.35 [0.95] y, weight 60.52 [9.31] kg, height 168.23 [9.47] cm). Interventions: The concentric peak torque of internal rotators and eccentric peak torque of external rotators of right shoulder were measured on an isokinetic dynamometer. Main Outcome Measures: Concentric peak torque of the internal rotators and eccentric peak torque of the external rotators, measured using an isokinetic dynamometer. Results: The concentric peak torque of internal rotators was significantly lower at 120° shoulder abduction compared with other positions (P < .001). The FCR was significantly higher at 120° shoulder abduction than 90° (P = .002) or 60° (P < .001) shoulder abduction because of the lower concentric peak torque. No significant difference was found in the FCR between the other 2 shoulder positions (P = .14). Conclusions: Shoulder position variations may influence FCR because of weakness of the internal rotators. Rehabilitation and injury prevention training programs should specifically focus on strengthening the internal rotators at more elevated angles of shoulder abduction.

B. Chen, Zhao, Cao, Hu, and L.B. Chen are with the Department of Physical Therapy, Shanghai Yangzhi Rehabilitation Hospital, Tongji University School of Medicine, Shanghai, China. Niu is with the Department of Rehabilitation Sciences, Tongji University School of Medicine, Shanghai, China.

Niu (niu@tongji.edu.cn) is corresponding author.
Journal of Sport Rehabilitation
Article Sections
References
  • 1.

    Steuri RSattelmayer MElsig Set al. Effectiveness of conservative interventions including exercise, manual therapy and medical management in adults with shoulder impingement: a systematic review and meta-analysis of RCTs. Br J Sports Med. 2017;51:13401347. PubMed ID: 28630217 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Baskurt ZBaskurt FGelecek NOzkan MH. The effectiveness of scapular stabilization exercise in the patients with subacromial impingement syndrome. J Back Musculoskelet Rehabil. 2011;24:173179. PubMed ID: 21849731 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ellenbecker TSCools A. Rehabilitation of shoulder impingement syndrome and rotator cuff injuries: an evidence-based review. Br J Sports Med. 2010;44:319327. PubMed ID: 20371557 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cowderoy GALisle DAO’Connell PT. Overuse and impingement syndromes of the shoulder in the athlete. Magn Reson Imaging Clin N Am. 2009;17:577593. PubMed ID: 19887291 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wang HKMacfarlane ACochrane T. Isokinetic performance and shoulder mobility in elite volleyball athletes from the United Kingdom. Br J Sports Med. 2000;34:3943. PubMed ID: 10690449 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Stickley CDHetzler RKFreemyer BGKimura IF. Isokinetic peak torque ratios and shoulder injury history in adolescent female volleyball athletes. J Athl Train. 2008;43:571577. PubMed ID: 19030134 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Warner JJMicheli LJArslanian LEKennedy JKennedy R. Patterns of flexibility, laxity, and strength in normal shoulders and shoulders with instability and impingement. Am J Sports Med. 1990;18:366375. PubMed ID: 2403184 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Smith MSparkes VBusse MEnright S. Upper and lower trapezius muscle activity in subjects with subacromial impingement symptoms: is there imbalance and can taping change it? Phys Ther Sport. 2009;10:4550. PubMed ID: 19376471 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Andrade Mdos SFleury AMde Lira CADubas JPda Silva AC. Profile of isokinetic eccentric-to-concentric strength ratios of shoulder rotator muscles in elite female team handball players. J Sports Sci. 2010;28:743749. PubMed ID: 20496224 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    van Cingel RHabets BWillemsen LStaal B. Shoulder dynamic control ratio and rotation range of motion in female junior elite handball players and controls. Clin J Sport Med. 2018;28:153158. PubMed ID: 28452832

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Carter ABKaminski TWDouex AT JrKnight CARichards JG. Effects of high volume upper extremity plyometric training on throwing velocity and functional strength ratios of the shoulder rotators in collegiate baseball players. J Strength Cond Res. 2007;21:208215. PubMed ID: 17313281 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wilk KEArrigo CAAndrews JR. Current concepts: the stabilizing structures of the glenohumeral joint. J Orthop Sports Phys Ther. 1997;25:364379. PubMed ID: 9168344 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    van der Helm FC. Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J Biomech. 1997;27:527550. doi:

  • 14.

    Lippitt SMatsen F. Mechanisms of glenohumeral joint stability. Clin Orthop Relat Res. 1993;291:2028.

  • 15.

    Yildiz YAydin TSekir UKiralp MZHazneci BKalyon TA. Shoulder terminal range eccentric antagonist/concentric agonist strength ratios in overhead athletes. Scand J Med Sci Sports. 2006;16:174180. PubMed ID: 16643195 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wilk KEAndrews JRArrigo CAKeirns MAErber DJ. The strength characteristics of internal and external rotator muscles in professional baseball pitchers. Am J Sports Med. 1993;21:6166. PubMed ID: 8427370 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Scoville CRArciero RATaylor DCStoneman PD. End range eccentric antagonist/concentric agonist strength ratios: a new perspective in shoulder strength assessment. J Orthop Sports Phys Ther. 1997;25:203207. PubMed ID: 9048326 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Wang HKCochrane T. Mobility impairment, muscle imbalance, muscle weakness, scapular asymmetry and shoulder injury in elite volleyball athletes. J Sports Med Phys Fitness. 2001;41:403410. PubMed ID: 11533574

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ng GYLam PC. A study of antagonist/agonist isokinetic work ratios of shoulder rotators in men who play badminton. J Orthop Sports Phys Ther. 2002;32:399404. PubMed ID: 12168958 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Niederbracht YShim ALSloniger MAPaternostro-Bayles MShort TH. Effects of a shoulder injury prevention strength training program on eccentric external rotator muscle strength and glenohumeral joint imbalance in female overhead activity athletes. J Strength Cond Res. 2008;22:140145. PubMed ID: 18296967 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Radaelli RBottaro MWeber FBrown LEPinto RS. Influence of body position on shoulder rotator muscle strength during isokinetic assessment. Isokinet Exerc Sci. 2001;18:119124. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hill AMPramsanik SMcGregor AH. Isokinetic dynamometry in assessment of external and internal axial rotation strength of the shoulder: comparison of two positions. Isokinet Exerc Sci. 2005;13:187195. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Howard WBurgess JVrhovnik Bet al. Humeral elevation reduces the dynamic control ratio of the shoulder muscles during internal rotation. J Sci Med Sport. 2017;20:344348. PubMed ID: 27670356 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Forthomme BDvir ZCrielaard JMCroisier JL. Isokinetic assessment of the shoulder rotators: a study of optimal test position. Clin Physiol Funct Imaging. 2011;31:227232. PubMed ID: 21470363 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Saccol MFGracitelli GCda Silva RTet al. Shoulder functional ratio in elite junior tennis players. Phys Ther Sport. 2010;11:811. PubMed ID: 20129117 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kannus P. Isokinetic evaluation of muscular performance: implications for muscle testing and rehabilitation. Int J Sports Med. 1994;15:S11S18. PubMed ID: 8157377 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    de Vet HCTerwee CBKnol DLBouter LM. When to use agreement versus reliability measures. J Clin Epidemiol. 2006;59:10331039. PubMed ID: 16980142 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Rathi STaylor NFGee JGreen RA. Measurement of glenohumeral joint translation using real-time ultrasound imaging: a physiotherapist and sonographer intra-rater and inter-rater reliability study. Man Ther. 2016;26:110116. PubMed ID: 27544451 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Saha AK. Dynamic stability of the glenohumeral joint. Acta Orthop Scand. 1971;42:491505. PubMed ID: 5144199 doi:

  • 30.

    Peat M. Functional anatomy of the shoulder complex. Phys Ther. 1986;66:18551865. PubMed ID: 3786416 doi:

  • 31.

    Hess SA. Functional stability of the glenohumeral joint. Man Ther. 2000;5:6371. PubMed ID: 10903581 doi:

  • 32.

    Rokito ASJobe FWPink MMPerry JBrault J. Electromyographic analysis of shoulder function during the volleyball serve and spike. J Shoulder Elbow Surg. 1998;7:256263. PubMed ID: 9658351 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hageman PAMason DKRydlund KWHimpal SA. Effects of position and speed on eccentric and concentric isokinetic testing of the shoulder rotators. J Orthop Sports Phys Ther. 1989;11:6469. PubMed ID: 18796928 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Soderberg GLBlaschak MJ. Shoulder internal and external rotation peak torque production through a velocity spectrum in differing. J Orthop Sports Phys Ther. 1987;8:518524. PubMed ID: 18797025 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Graichen HBonel HStammberger TEnglmeier KHReiser MEckstein F. Subacromial space width changes during abduction and rotation—a 3-D MR imaging study. Surg Radiol Anat. 1999;21:5964. PubMed ID: 10370995 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Leong HTFu SN. The effects of rigid scapular taping on the subacromial space in athletes with and without rotator cuff tendinopathy: a randomized controlled study. J Sport Rehabil. 2019;28(3):250255.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Moeller CRBliven KCValier AR. Scapular muscle-activation ratios in patients with shoulder injuries during functional shoulder exercises. J Athl Train. 2014;49:345355. PubMed ID: 24840585 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Cools AMWitvrouw EEDeclercq GADanneels LACambier DC. Scapular muscle recruitment patterns: trapezius muscle latency with and without impingement symptoms. Am J Sports Med. 2003;31:542549. PubMed ID: 12860542 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Ludewig PMCook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80:276291. PubMed ID: 10696154

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Ruwe PAPink MJobe FWPerry JScovazzo ML. The normal and the painful shoulders during the breaststroke. Electromyographic and cinematographic analysis of twelve muscles. Am J Sports Med. 1994;22:789796. PubMed ID: 7856803 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hinterwimmer SVon Eisenhart-Rothe RSiebert Met al. Influence of adducting and abducting muscle forces on the subacromial space width. Med Sci Sports Exerc. 2003;35:20552059. PubMed ID: 14652502 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Gaudet STremblay JBegon M. Muscle recruitment patterns of the subscapularis, serratus anterior and other shoulder girdle muscles during isokinetic internal and external rotations. J Sports Sci. 2018;36:985993. PubMed ID: 28673118 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Sharkey NAMarder RA. The rotator cuff opposes superior translation of the humeral head. Am J Sports Med. 1995;23:270275. PubMed ID: 7661251 doi:

  • 44.

    Ellenbecker TSDavies GJRowinski MJ. Concentric versus eccentric isokinetic strengthening of the rotator cuff. Objective data versus functional test. Am J Sports Med. 1998;16:6469. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Duchateau JEnoka RM. Neural control of shortening and lengthening contractions: influence of task constraints. J Physiol. 2008;586:58535864. PubMed ID: 18955381 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Lombardi VPiazzesi G. The contractile response during steady lengthening of stimulated frog muscle fibres. J Physiol. 1990;431:141171. PubMed ID: 2100305 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Noffal GJ. Isokinetic eccentric-to-concentric strength ratios of the shoulder rotator muscles in throwers and nonthrowers. Am J Sports Med. 2003;31:537541. PubMed ID: 12860541 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Greenfield BHDonatelli RWooden MJWilkes J. Isokinetic evaluation of shoulder rotational strength between the plane of scapula and the frontal plane. Am J Sports Med. 1990;18:124128. PubMed ID: 2343977 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 151 151 27
Full Text Views 3 3 1
PDF Downloads 2 2 1
Altmetric Badge
PubMed
Google Scholar