Effects of a 12-Week Chronic Stretch Training Program at Different Intensities on Joint and Muscle Mechanical Responses: A Randomized Clinical Trial

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Stretching intensity is an important variable that can be manipulated with flexibility training. However, there is a lack of evidence regarding this variable and its prescription in stretching programs. Objective: To investigate the effects of 12 weeks of knee flexor static stretching at different intensities on joint and muscle mechanical properties. Design: A randomized clinical trial. Setting: Laboratory. Participants: A total of 14 untrained men were allocated into the low- or high-intensity group. Main Outcome Measures: Assessments were performed before, at 6 week, and after intervention (12 wk) for biceps femoris long head architecture (resting fascicle length and angle), knee maximal range of motion (ROM) at the beginning and maximal discomfort angle, knee maximal tolerated passive torque, joint passive stiffness, viscoelastic stress relaxation, knee passive torque at a given angle, and affective responses to training. Results: No significant differences were observed between groups for any variable. ROM at the beginning and maximal discomfort angle increased at 6 and 12 weeks, respectively. ROM significantly increased with the initial angle of discomfort (P < .001, effect size = 1.38) over the pretest measures by 13.4% and 14.6% at the 6- and 12-week assessments, respectively, and significantly improved with the maximal discomfort angle (P < .001, effect size = 1.25) by 15.6% and 18.8% from the pretest to the 6- and 12-week assessments, respectively. No significant effects were seen for muscle architecture and affective responses. Initial viscoelastic relaxation for the low-intensity group was lower than ending viscoelastic relaxation. Conclusion: These results suggest that stretching with either low or high discomfort intensities are effective in increasing joint maximal ROM, and that does not impact on ROM, stiffness, fascicle angle and length, or affective response differences.

Beltrão and Pirauá are with the Department of Physical Education, Federal Rural University of Pernambuco, Recife, Brazil. Santos and de Oliveira are with the School of Physical Education, University of Pernambuco, Recife, Brazil. Behm is with the School of Human Kinetics and Recreation, Memorial University of Newfoundland, St John’s, NL, Canada. Pitangui and de Araújo are with the Department of Physical Therapy, University of Pernambuco, Petrolina, Brazil.

Beltrão (nat.barros@gmail.com) is corresponding author.
  • 1.

    Freitas SR, Vaz JR, Gomes L, et al. A new tool to assess the perception of stretching intensity. J Strength Cond Res. 2015;29(9):2666–2678. PubMed ID: 25763516 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Chagas MH, Bhering EL, Bergamini JC, Menzel H-J. Comparação de duas diferentes intensidades de alongamento na amplitude de movimento. Rev Bras Med do Esporte. 2008;14(2):99–103. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Freitas SR, Vilarinho D, Rocha Vaz J, Bruno PM, Costa PB, Mil-homens P. Responses to static stretching are dependent on stretch intensity and duration. Clin Physiol Funct Imaging. 2015;35(6):478–484. PubMed ID: 25164268 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Freitas SR, Mil-Homens P. Effect of 8-week high-intensity stretching training on biceps femoris architecture. J Strength Cond Res. 2015;29(6):1737–1740. PubMed ID: 25486299 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Behm DG, Kibele A. Effects of differing intensities of static stretching on jump performance. Eur J Appl Physiol. 2007;101(5):587–594. PubMed ID: 17674024 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Young W, Elias G, Power J. Effects of static stretching volume and intensity on plantar flexor explosive force production and range of motion. J Sports Med Phys Fitness. 2006;46(3):403–411. PubMed ID: 16998444

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Freitas SR, Andrade RJ, Larcoupaille L, Mil-homens P, Nordez A. Muscle and joint responses during and after static stretching performed at different intensities. Eur J Appl Physiol. 2015;115(6):1263–1272. PubMed ID: 25585964 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol. 2008;586(1):97–106. PubMed ID: 17884924 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Apostolopoulos N, Metsios GS, Flouris AD, Koutedakis Y, Wyon MA. The relevance of stretch intensity and position—a systematic review. Front Psychol. 2015;6:1128. PubMed ID: 26347668 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ratamess NA, Falvo MJ, Mangine GT, Hoffman JR, Faigenbaum AD, Kang J. The effect of rest interval length on metabolic responses to the bench press exercise. Eur J Appl Physiol. 2007;100(1):1–17. PubMed ID: 17237951 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mahieu NN, McNair P, De Muynck M, et al. Effect of static and ballistic stretching on the muscle-tendon tissue properties. Med Sci Sports Exerc. 2007;39(3):494–501. PubMed ID: 17473776 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Freitas SR, Mendes B, Le Sant G, Andrade RJ, Nordez A, Milanovic Z. Can chronic stretching change the muscle-tendon mechanical properties? A review. Scand J Med Sci Sports. 2018;28(3):794–806. PubMed ID: 28801950 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Wyon M, Felton L, Galloway S. A comparison of two stretching modalities on lower-limb range of motion measurements in recreational dancers. J Strength Cond Res. 2009;23(7):2144–2148. PubMed ID: 19855344 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wyon MA, Smith A, Koutedakis Y. A comparison of strength and stretch interventions on active and passive ranges of movement in dancers: a randomized controlled trial. J Strength Cond Res. 2013;27(11):3053–3059. PubMed ID: 23439346 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Magnusson SP, Simonsen EB, Aagaard P, Boesen J, Johannsen F, Kjaer M. Determinants of musculoskeletal flexibility: viscoelastic properties, cross-sectional area, EMG and stretch tolerance. Scand J Med Sci Sports. 1997;7(4):195–202. PubMed ID: 9241023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Weppler CH, Magnusson SP. Increasing muscle extensibility: a matter of increasing length or modifying sensation? Phys Ther. 2010;90(3):438–449. PubMed ID: 20075147 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Williams DM, Dunsiger S, Ciccolo JT, Lewis BA, Albrecht AE, Marcus BH. Acute affective response to a moderate-intensity exercise stimulus predicts physical activity participation 6 and 12 months later. Psychol Sport Exerc. 2008;9(3):231–245. PubMed ID: 18496608 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Vandoni M, Codrons E, Marin L, Correale L, Bigliassi M, Buzzachera CF. Psychophysiological responses to group exercise training sessions: does exercise intensity matter? PLoS One. 2016;11(8):e0149997. PubMed ID: 27490493 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Leite T, de Souza Teixeira A, Saavedra F, Leite RD, Rhea MR, Simão R. Influence of strength and flexibility training, combined or isolated, on strength and flexibility gains. J Strength Cond Res. 2015;29(4):1083–1088. PubMed ID: 25268286 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hardy CJ, Rejeski WJ. Not what, but how one feels: the measurement of affect during exercise. J Sport Exerc Psychol. 1989;11(3):304–317. doi:

  • 21.

    Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris architecture and strength in athletes with a previous anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2016;48(3):337–345. PubMed ID: 26429732 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Klimstra M, Dowling J, Durkin JL, MacDonald M. The effect of ultrasound probe orientation on muscle architecture measurement. J Electromyogr Kinesiol. 2007;17(4):504–514. PubMed ID: 16919969 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    de Aquino CF, Gonçalves GGP, da Fonseca ST, Mancini MC. Análise da relação entre flexibilidade e rigidez passiva dos isquiotibiais. Rev Bras Med do Esporte. 2006;12(4):195–200. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Lima KMM, Carneiro SP, Alves Dde S, Peixinho CC, de Oliveira LF. Assessment of muscle architecture of the biceps femoris and vastus lateralis by ultrasound after a chronic stretching program. Clin J Sport Med. 2015;25(1):55–60. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Cabido CET, Bergamini JC, Andrade AGP, Lima FV, Menzel HJ, Chagas MH. Acute effect of constant torque and angle stretching on range of motion, muscle passive properties, and stretch discomfort perception. J Strength Cond Res. 2014;28(4):1050–1057. PubMed ID: 24077374 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Sobolewski EJ, Ryan ED, Thompson BJ, McHugh MP, Conchola EC. The influence of age on the viscoelastic stretch response. J Strength Cond Res. 2014;28(4):1106–1112. PubMed ID: 24276306 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–374. PubMed ID: 11018445

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lamontagne A, Malouin F, Richards CL. Contribution of passive stiffness to ankle plantarflexor moment during gait after stroke. Arch Phys Med Rehabil. 2000;81(3):351–358. PubMed ID: 10724082

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ayala F, de Baranda Andújar PS. Effect of 3 different active stretch durations on hip flexion range of motion. J Strength Cond Res. 2010;24(2):430–436. PubMed ID: 20072058 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cipriani DJ, Terry ME, Haines MA, Tabibnia AP, Lyssanova O. Effect of stretch frequency and sex on the rate of gain and rate of loss in muscle flexibility during a hamstring-stretching program: a randomized single-blind longitudinal study. J Strength Cond Res. 2012;26(8):2119–2129. PubMed ID: 22027850 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Ferreira-Valente MA, Pais-Ribeiro JL, Jensen MP. Validity of four pain intensity rating scales. Pain. 2011;152(10):2399–2404. PubMed ID: 21856077 doi:

  • 32.

    Beltrão NB, Santos CX, de Oliveira VMA, Pirauá ALT, Pitangui ACR, de Araújo RC. Test-retest reliability of the range of motion and stiffness based on discomfort perception. Isokinet Exerc Sci. 2017;25(3):187–192. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Muanjai P, Jones DA, Mickevicius M, et al. The effects of 4 weeks stretching training to the point of pain on flexibility and muscle tendon unit properties. Eur J Appl Physiol. 2017;117(8):1713–1725. PubMed ID: 28647867 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–688. PubMed ID: 15064596 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ben M, Harvey LA. Regular stretch does not increase muscle extensibility: a randomized controlled trial. Scand J Med Sci Sports. 2010;20(1):136–144. PubMed ID: 19497032 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Mahieu NN, Cools A, De Wilde B, Boon M, Witvrouw E. Effect of proprioceptive neuromuscular facilitation stretching on the plantar flexor muscle-tendon tissue properties. Scand J Med Sci Sports. 2009;19(4):553–560. PubMed ID: 18627559 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ryan ED, Beck TW, Herda TJ, et al. The time course of musculotendinous stiffness responses following different durations of passive stretching. J Orthop Sports Phys Ther. 2008;38(10):632–639. PubMed ID: 18827325 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Andrade JA, Figueiredo LC, Santos TRT, Paula ACV, Bittencourt NFN, Fonseca ST. Confiabilidade da mensuração do alinhamento pélvico no plano transverso durante o teste da ponte com extensão unilateral do joelho. Rev Bras Fisioter. 2012;16(4):268–274. PubMed ID: 22899181 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Effects of a 4-week static stretch training program on passive stiffness of human gastrocnemius muscle-tendon unit in vivo. Eur J Appl Physiol. 2012;112(7):2749–2755. PubMed ID: 22124523 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Hindle KB, Whitcomb TJ, Briggs WO, Hong J. Proprioceptive Neuromuscular Facilitation (PNF): its mechanisms and effects on range of motion and muscular function. J Hum Kinet. 2012;31:105–113. PubMed ID: 23487249 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–979. PubMed ID: 5320816

  • 42.

    Bolsterlee B, Gandevia SC, Herbert RD. Effect of transducer orientation on errors in ultrasound image-based measurements of human medial gastrocnemius muscle fascicle length and pennation. PLoS One. 2016;11(6):e0157273. PubMed ID: 27294280 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Bolsterlee B, Veeger HE, van der Helm FC, Gandevia SC, Herbert RD. Comparison of measurements of medial gastrocnemius architectural parameters from ultrasound and diffusion tensor images. J Biomech. 2015;48(6):1133–1140. PubMed ID: 25682540 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Bolsterlee B, Gandevia SC, Herbert RD. Ultrasound imaging of the human medial gastrocnemius muscle: how to orient the transducer so that muscle fascicles lie in the image plane. J Biomech. 2016;49(7):1002–1008. PubMed ID: 26905734 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 468 468 183
Full Text Views 25 25 7
PDF Downloads 8 8 1