Is an Elastic Ankle Support Effective in Improving Jump Landing Performance, and Static and Dynamic Balance in Young Adults With and Without Chronic Ankle Instability?

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context: In some patients, ankle sprains lead to chronic symptoms like pain or muscular weakness called chronic ankle instability (CAI). External ankle supports have shown to be effective in preventing sprains and reducing recurrence, but the underlying mechanisms are unclear. As sensorimotor variables are associated with injury incidence, an influence of external ankle support on landing performance and balance seems plausible. Objective: To analyze the effects of an elastic ankle support on jump landing performance and static and dynamic balance in patients with CAI and healthy controls. Design: Crossover study. Setting: Functional tests in a laboratory setting. Patients or Other Participants: Twenty healthy students and 20 patients with CAI were included for study participation based on their scores in ankle stability and function questionnaires. Intervention: Healthy and CAI participants performed each test with and without an elastic ankle support. Main Outcome Measures: (1) Jump landing performance was measured with the Landing Error Scoring System, (2) static balance was assessed with the Balance Error Scoring System, and (3) dynamic balance was assessed using the Y Balance Test. Linear mixed models were used to analyze the effects of the elastic ankle support on sensorimotor parameters. Results: Healthy controls performed significantly better in the Landing Error Scoring System (P = .01) and Y Balance Test anterior direction (P = .01). No significant effects of elastic ankle support on Landing Error Scoring System, Balance Error Scoring System, or Y Balance Test performance were observed in the CAI or control group. There were no significant group-by-ankle support interactions. Conclusions: In the current study, the acute use of elastic ankle support was ineffective for enhancing jump landing performance, and static and dynamic balance. Further research is needed to identify the underlying mechanisms of the preventive effects of elastic ankle support.

John, Stotz, Gmachowski, Rahlf, Hamacher, and Zech are with the Department of Human Movement Science and Exercise Physiology, Institute of Sports Science, Friedrich Schiller University Jena, Jena, Germany. Hollander is with the Department of Sports and Rehabilitation Medicine, BG Trauma Hospital of Hamburg, Hamburg, Germany; and the Department of Sports and Exercise Medicine, Institute of Human Movement Science, University of Hamburg, Hamburg, Germany.

John (cornelius.john@uni-jena.de) is corresponding author.
Journal of Sport Rehabilitation
Article Sections
References
  • 1.

    Lambers KOotes DRing D. Incidence of patients with lower extremity injuries presenting to US emergency departments by anatomic region, disease category, and age. Clin Orthop Relat Res. 2012;470(1):284290. PubMed ID: 21785896 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gribble PABleakley CMCaulfield BMet al. Evidence review for the 2016 International Ankle Consortium consensus statement on the prevalence, impact and long-term consequences of lateral ankle sprains. Br J Sports Med. 2016;50(24):14961505. PubMed ID: 27259753 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37(4):364375. PubMed ID: 12937557

  • 4.

    van Rijn RMvan Os AGBernsen RMLuijsterburg PAKoes BWBierma-Zeinstra SM. What is the clinical course of acute ankle sprains? A systematic literature review. Am J Med. 2008;121(4):324331.e6. PubMed ID: 18374692 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Verhagen EABay K. Optimising ankle sprain prevention: a critical review and practical appraisal of the literature. Br J Sports Med. 2010;44(15):10821088. PubMed ID: 21047837 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Anandacoomarasamy ABarnsley L. Long term outcomes of inversion ankle injuries. Br J Sports Med. 2005;39(3):e14. PubMed ID: 15728682 doi:

  • 7.

    Delahunt ECoughlan GFCaulfield BNightingale EJLin CWHiller CE. Inclusion criteria when investigating insufficiencies in chronic ankle instability. Med Sci Sports Exerc. 2010;42(11):21062121. PubMed ID: 20351590 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Barelds Ivan den Broek AGHuisstede BMA. Ankle bracing is effective for primary and secondary prevention of acute ankle injuries in athletes: a systematic review and meta-analyses. Sports Med. 2018;48(12):27752784. PubMed ID: 30298478 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    McGovern RPMartin RL. Managing ankle ligament sprains and tears: current opinion. Open Access J Sports Med. 2016;7:3342. PubMed ID: 27042147

  • 10.

    Doherty CBleakley CDelahunt EHolden S. Treatment and prevention of acute and recurrent ankle sprain: an overview of systematic reviews with meta-analysis. Br J Sports Med. 2017;51(2):113125. PubMed ID: 28053200 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dizon JMReyes JJ. A systematic review on the effectiveness of external ankle supports in the prevention of inversion ankle sprains among elite and recreational players. J Sci Med Sport. 2010;13(3):309317. PubMed ID: 19586798 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hiller CEIghtingale EJNLin CWCCoughlan GFCaulfield BDelahunt E. Characteristics of people with recurrent ankle sprains: a systematic review with meta-analysis. Br J Sports Med. 2011;45(8):660672. PubMed ID: 21257670 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Plisky PJRauh MJKaminski TWUnderwood FB. Star Excursion Balance test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther. 2006;36(12):911919. PubMed ID: 17193868 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Padua DADiStefano LJBeutler AIde la Motte SJDiStefano MJMarshall SW. The landing error scoring system as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J Athl Train 2015;50(6):589595. PubMed ID: 25811846 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gribble PADelahunt EBleakley Cet al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the international ankle consortium. J Orthop Sports Phys Ther. 2013;43(8):585591. PubMed ID: 23902805 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hiller CERefshauge KMBundy ACHerbert RDKilbreath SL. The cumberland ankle instability tool: a report of validity and reliability testing. Arch Phys Med Rehabil. 2006;87(9):12351241. PubMed ID: 16935061 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Nauck TLohrer H. Translation, cross-cultural adaption and validation of the German version of the Foot and Ankle Ability Measure for patients with chronic ankle instability. Br J Sports Med. 2011;45(10):785790. PubMed ID: 19955163 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Bennell KLTalbot RCWajswelner HTechovanich WKelly DHHall AJ. Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Aust J Physiother. 1998;44(3):175180. PubMed ID: 11676731 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Padua DAMarshall SWBoling MCThigpen CAGarrett WE JrBeutler AI. The landing error scoring system (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL Study. Am J Sports Med. 2009;37(10):19962002. PubMed ID: 19726623 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bell DRGuskiewicz KMClark MAPadua DA. Systematic review of the balance error scoring system. Sports Health. 2011;3(3):287295. PubMed ID: 23016020 doi:

  • 21.

    Finnoff JTPeterson VJHollman JHSmith J. Intrarater and interrater reliability of the Balance Error Scoring System (BESS). PM R. 2009;1(1):5054. PubMed ID: 19627872 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Gribble PAHertel JPlisky P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. J Athl Train. 2012;47(3):339357. PubMed ID: 22892416 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Filipa AByrnes RPaterno MVMyer GDHewett TE. Neuromuscular training improves performance on the star excursion balance test in young female athletes. J Orthop Sports Phys Ther. 2010;40(9):551558. PubMed ID: 20710094 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Gribble PAHertel J. Considerations for normalizing measures of the star excursion balance test. Meas Phys Educ Exerc Sci. 2003;7(2):89100. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hueber GAHall EASage BWDocherty CL. Prophylactic bracing has no effect on lower extremity alignment or functional performance. Int J Sports Med. 2017;38(8):637643. PubMed ID: 28564742 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    DiStefano LJPadua DABrown CNGuskiewicz KM. Lower extremity kinematics and ground reaction forces after prophylactic lace-up ankle bracing. J Athl Train. 2008;43(3):234241. PubMed ID: 18523572 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Broglio SPMonk ASopiarz KCooper ER. The influence of ankle support on postural control. J Sci Med Sport. 2009;12(3):388392. PubMed ID: 18550434 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Zech AMeining SHotting KLiebl DMattes KHollander K. Effects of barefoot and footwear conditions on learning of a dynamic balance task: a randomized controlled study. Eur J Appl Physiol. 2018;118(12):26992706. PubMed ID: 30267226 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    John CHollander Kde Villiers JEHamacher DVenter RZech A. The influence of biological maturity on motor performance among habitually barefoot versus habitually shod adolescents. Eur J Sport Sci. 2019;19(5):621627. PubMed ID: 30422752 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Zech AVenter Rde Villiers JESehner SWegscheider KHollander K. Motor skills of children and adolescents are influenced by growing up barefoot or shod. Front Pediatr. 2018;6:115. PubMed ID: 29922637 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lieberman DE. What we can learn about running from barefoot running: an evolutionary medical perspective. Exerc Sport Sci Rev. 2012;40(2):6372. PubMed ID: 22257937 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hadadi MEbrahimi IMousavi MEAminian GEsteki ARahgozar M. The effect of combined mechanism ankle support on postural control of patients with chronic ankle instability. Prosthet Orthot Int. 2017;41(1):5864. PubMed ID: 26271261 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hrysomallis CMcLaughlin PGoodman C. Relationship between static and dynamic balance tests among elite Australian Footballers. J Sci Med Sport. 2006;9(4):288291. PubMed ID: 16844414 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hoch MCStaton GSMcKeon PO. Dorsiflexion range of motion significantly influences dynamic balance. J Sci Med Sport. 2011;14(1):9092. PubMed ID: 20843744 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hadadi MMousavi MEFardipour SVameghi RMazaheri M. Effect of soft and semirigid ankle orthoses on Star Excursion Balance Test performance in patients with functional ankle instability. J Sci Med Sport. 2014;17(4):430433. PubMed ID: 23810776 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hardy LHuxel KBrucker JNesser T. Prophylactic ankle braces and star excursion balance measures in healthy volunteers. J Athl Train. 2008;43(4):347351. PubMed ID: 18668181 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Maeda NUrabe YTsutsumi Set al. Effect of semi-rigid and soft ankle braces on static and dynamic postural stability in young male adults. J Sports Sci Med. 2016;15(2):352357. PubMed ID: 27274675

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Hubscher MZech APfeifer KHänsel FVogt LBanzer W. Neuromuscular training for sports injury prevention: a systematic review. Med Sci Sports Exerc. 2010;42(3):413421. PubMed ID: 19952811 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    McKeon POHertel J. Systematic review of postural control and lateral ankle instability, Part II: Is balance training clinically effective? J Athl Train. 2008;43(3):305315. PubMed ID: 18523567 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 78 78 16
Full Text Views 2 2 0
PDF Downloads 1 1 0
Altmetric Badge
PubMed
Google Scholar