Effects of the Functional Heel Drop Exercise on the Muscle Architecture of the Gastrocnemius

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: The architectural characteristics of a muscle determine its function. Objective: To determine the architectural adaptations of the lateral gastrocnemius (LG) and medial gastrocnemius (MG) muscles after a functional eccentric strength training protocol consisting of heel drop exercises, followed by a subsequent detraining period. Design: Pretest and posttest. Setting: Training rooms and laboratory. Participants: The participants (N = 45) who were randomly divided into an experimental group (EG, n = 25) and a control group (CG, n = 20). Interventions: The 13-week intervention included participants (N = 45) who were randomly divided into an EG (n = 25) and a CG (n = 20). The EG performed a week of control and training, 8 weeks of eccentric training, and 4 weeks of detraining. The CG did not perform any type of muscular training. The architectural characteristics of the LG and MG muscles were evaluated at rest in both groups using 2-D ultrasound before (pretest–week 1) and after (posttest–week 9) the training, and at the end of the detraining period (retest–week 13). Main Outcome Measures: One-way repeated measures analysis of variance was used to determine training-induced changes in each of the variables of the muscle architecture. Results: After the training period, the members of the EG experienced a significant increase in the fascicle length of LG (t = −9.85, d = 2.78, P < .001) and MG (t = −8.98, d = 2.54, P < .001), muscle thickness (t = −6.71, d = 2.86, P < .001) and (t = −7.85, d = 2.22, P < .001), and the pennation angle (t = −10.21, d = 1.88, P < .05) and (t = −1.87, d = 0.53, P < .05), respectively. After the detraining period, fascicle length, muscle thickness, and pennation angle showed a significant decrease. In the CG, no significant changes were observed in any of the variables. Conclusions: The heel drop exercise seems to generate adaptations in the architectural conditions of LG and MG, which are also reversible after a detraining period. These results may have practical implications for injury prevention and rehabilitation programs.

Alonso-Fernandez and Gutiérrez-Sánchez are with Special Didactics Department, Faculty of Science Education and Sport, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, University of Vigo, Pontevedra, Spain. Taboada-Iglesias and García-Remeseiro are with the Functional Biology and Health Sciences Department, Faculty of Physiotherapy, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, University of Vigo, Pontevedra, Spain.

Alonso-Fernandez (diego_alonso@uvigo.es) is corresponding author.
  • 1.

    Douglas J, Pearson S, Ross A, McGuigan M. Chronic adaptations to eccentric training: a systematic review. Sports Med. 2017;47(5):917–941. PubMed ID: 27647157 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther. 2003;33(10):557–571. PubMed ID: 14620785 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Roig M, O’Brien K, Kirk G, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med. 2009;43(8):556–568. PubMed ID: 18981046 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Brooks JHM, Fuller CW, Kemp SPT, Reddin DB. Epidemiology of injuries in English professional rugby union: part 1 match injuries. Br J Sports Med. 2005;39(10):757–766. PubMed ID: 16183774 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Baroni BM, Geremia JM, Rodrigues R, De Acebedo FR, Karamanidis K, Vaz MA. Muscle architecture adaptations to knee extensor eccentric training: rectus femoris vs vastus lateralis. Muscle Nerve. 2013;48(4):498–506. PubMed ID: 23852989 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with Nordic Hamstring exercise running. Scand J Med Sci Sports. 2018;28(1):88–94. PubMed ID: 28314091 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bourne MN, Duhig SJ, Timmins RG, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469–477. PubMed ID: 27660368 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris long head architecture: a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;47(5):905–913. PubMed ID: 25207929 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Alonso-Fernandez D, Gutierrez-Sanchez A, Garcia-Remeseiro T, Garganta R. Effects of the Nordic hamstring exercise on the architecture of the semitendinosus. Isokinet Exerc Sci. 2018;26(2):81–88. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115–130. PubMed ID: 453338

    • Search Google Scholar
    • Export Citation
  • 11.

    Fling BW, Christie A, Kamen G. Motor unit synchronization in FDI and biceps brachii muscles of strength-trained males. J Electromyogr Kinesiol. 2009;19(5):800–809. PubMed ID: 18691906 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Christie A, Kamen G. Short-term training adaptations in maximal motor unit firing rates and after hyperpolarization duration. Muscle Nerve. 2010;41(5):651–660. PubMed ID: 19941348

    • Search Google Scholar
    • Export Citation
  • 13.

    Rader EP, Miller GR, Chetlin RD, Wirth O, Baker BA. Volitional weight-lifting in rats promotes adaptation via performance and muscle morphology prior to gains in muscle mass. J Environ Health Insigths. 2014;8(suppl 1):1–9.

    • Search Google Scholar
    • Export Citation
  • 14.

    Lieber RL, Ward SR. Skeletal muscle design to meet functional demands. Philos Trans R Soc Lond B Biol Sci. 2011;366(1570):1466–1476. PubMed ID: 21502118 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Blazevich AJ, Cannavan D, Coleman DR, Horne S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol. 2007;103(5):1565–1575. PubMed ID: 17717119 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Seynnes OR, Maganaris CN, de Boer MD, Di Prampero PE, Narici MV. Early structural adaptations to unloading in the human calf muscles. Acta Physiol. 2008;193(3):265–274. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Duclay J, Martin A, Duclay A, Cometti G, Pousson M. Behavior of fascicles and the myotendinous junction of human medial gastrocnemius following eccentric strength training. Muscle Nerve. 2009;39(6):819–827. PubMed ID: 19301364 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Timmins RG, Ruddy JD, Presland J, et al. Architectural changes of the biceps femoris long head after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499–508. PubMed ID: 26460634 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Seymore KD, Domire ZJ, Devita P, Rider PM, Kulas AS. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur J Appl Physiol. 2017;117(5):943–953. PubMed ID: 28280975 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Ekstrand J, Hägglun M, Walden M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):1226–1232. PubMed ID: 21335353 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Werner BC, Belkin NS, Kennelly S, Weiss L, Barnes RP, Potter HG. Acute gastrocnemius-soleus complex injuries in National Football League Athletes. Orthop J Sports Med. 2017;5(1):232596711668034. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Orchard J. Intrinsic and extrinsic risk factors for muscle strains in Australian football. Am J Sports Med. 2001;29(3):300–303. PubMed ID: 11394599 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Fields KB, Rigby MD. Muscular calf injuries in runners. Curr Sports Med Rep. 2016;15(5):320–324. PubMed ID: 27618240 doi:

  • 24.

    Alfredson H, Pietilä T, Jonsson P, Lorentzon R. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med. 1998;26(3):360–366. PubMed ID: 9617396 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kellis E, Galanis N, Natsis K, Kapetanos G. Validity of architectural properties of the hamstring muscles: correlation of ultrasound findings with cadaveric dissection. J Biomech. 2009;42(15):2549–2554. PubMed ID: 19646698 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Fouré A, Nordez A, Cornu C. Effects of eccentric training on mechanical properties of the plantar flexor muscle-tendon complex. J Appl Physiol. 2013;114(5):523–537. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Lynn R, Morgan DL. Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running. J Appl Physiol. 1994;77(3):1439–1444. PubMed ID: 7836150 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102(1):368–373. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Blazevich AJ, Gill ND, Zhou S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat. 2006;209(3):289–310. PubMed ID: 16928199 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Narici M, Cerretelli P. Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging. J Gravit Physiol. 1998;5(1):73–74.

    • Search Google Scholar
    • Export Citation
  • 31.

    Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–530. PubMed ID: 23402871 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Sharifnezhad A, Marzilger R, Arampatzis A. Effects of load magnitude, muscle length and velocity during eccentric chronic loading on the longitudinal growth of the vastus lateralis muscle. J Exp Biol. 2014;217(15):2726–2733. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hullfish TJ, O’Connor KM, Baxter JR. Gastrocnemius fascicles are shorter and more pennate throughout the first month following acute Achilles tendon rupture. PeerJ. 2019;7:e6788. PubMed ID: 31065459 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Scott D, Johansson J, McMillan LB, Ebeling PR, Nordstrom A, Nordstrom P. Mid-calf skeletal muscle density and its associations with physical activity, bone health and incident 12-month falls in older adults: the healthy ageing initiative. Bone. 2019;120:446–451. PubMed ID: 30537557 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Simpson CL, Kim BDH, Bourcet MR, Jones GR, Jakobi JM. Stretch training induces unequal adaptation in muscle fascicles and thickness in medial and lateral gastrocnemii. Scand J Med Sci Sports. 2017;27:1597–1604. PubMed ID: 28138986 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 338 338 92
Full Text Views 12 12 0
PDF Downloads 2 2 0