Decreased Postural Control in Patients Undergoing Anterior Cruciate Ligament Reconstruction Compared to Healthy Controls

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Patients with anterior cruciate ligament (ACL) tears are likely to have deficient dynamic postural stability compared with healthy sex- and age-matched controls. Objectives: To test the hypothesis that patients undergoing ACL reconstruction have decreased dynamic postural stability compared with matched healthy controls. Design: Prospective case-control study. Setting: Orthopedic sports medicine and physical therapy clinics. Patients or Other Participants: Patients aged 20 years and younger with an ACL tear scheduled for reconstruction were enrolled prospectively. Controls were recruited from local high schools and colleges via flyers. Interventions: Patients underwent double-stance dynamic postural stability testing prior to surgery, recording time to failure and dynamic motion analysis (DMA) scores. Patients were then matched with healthy controls. Main Outcome Measures: Demographics, time to failure, and DMA scores were compared between groups. Results: A total of 19 females and 12 males with ACL tears were matched with controls. Individuals with ACL tears were more active (Marx activity score: 15.7 [1.0] vs 10.8 [4.9], P < .001); had shorter times until test failure (84.4 [15.8] vs 99.5 [14.5] s, P < .001); and had higher (worse) DMA scores (627 [147] vs 481 [132], P < .001), indicating less dynamic postural stability. Six patients with ACL deficiency (1 male and 5 females) demonstrated lower (better) DMA scores than their controls, and another 7 (4 males and 3 females) were within 20% of controls. Conclusions: Patients undergoing ACL reconstruction had worse global dynamic postural stability compared with well-matched controls. This may represent the effect of the ACL injury or preexisting deficits that contributed to the injury itself. These differences should be studied further to evaluate their relevance to ACL injury risk, rehabilitation, and return to play.

Staples, Schafer, Smith, Halstead, Blackman, Haas, Matava, Wright, and Brophy are with the Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO. Motley is with STAR, Chesterfield, MO. Steger-May is with the Division of Biostatistics, Washington University School of Medicine in St. Louis, MO.

Brophy (BrophyRH@wustl.edu) is corresponding author.
  • 1.

    Spindler KP, Wright RW. Clinical practice. Anterior cruciate ligament tear. N Engl J Med. 2008;359(20):2135–2142. PubMed ID: 19005197 doi:

  • 2.

    Herzog MM, Marshall SW, Lund JL, Pate V, Mack CD, Spang JT. Incidence of anterior cruciate ligament reconstruction among adolescent females in the United States, 2002 through 2014. JAMA Pediatr. 2017;171(8):808–810. PubMed ID: 28604937 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med. 2005;33(10):1579–1602. PubMed ID: 16199611 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mall NA, Chalmers PN, Moric M, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):2363–2370. PubMed ID: 25086064 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Pinczewski LA, Deehan DJ, Salmon LJ, Russell VJ, Clingeleffer A. A five-year comparison of patellar tendon versus four-strand hamstring tendon autograft for arthroscopic reconstruction of the anterior cruciate ligament. Am J Sports Med. 2002;30(4):523–536. PubMed ID: 12130407 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wright RW, Dunn WR, Amendola A, et al. Risk of tearing the intact anterior cruciate ligament in the contralateral knee and rupturing the anterior cruciate ligament graft during the first 2 years after anterior cruciate ligament reconstruction: a prospective MOON cohort study. Am J Sports Med. 2007;35(7):1131–1134. PubMed ID: 17452511 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bowers Jr, KD, Martin RB. Impact absorption, new and old AstroTurf at West Virginia University. Med Sci Sports. 1974;6(3):217–221. PubMed ID: 4437352

  • 8.

    Chandrashekar N, Slauterbeck J, Hashemi J. Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: a cadaveric study. Am J Sports Med. 2005;33(10):1492–1498. PubMed ID: 16009992 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    John R, Dhillon MS, Sharma S, Prabhakar S, Bhandari M. Is there a genetic predisposition to anterior cruciate ligament tear? A systematic review. Am J Sports Med. 2016;44(12):3262–3269. PubMed ID: 26842309 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Suprasanna K, Chamala T, Kumar A. Comparison of anatomical risk factors for noncontact anterior cruciate ligament injury using magnetic resonance imaging. J Clin Orthop Trauma. 2019;10(1):143–148. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kiapour AM, Yang DS, Badger GJ, et al. Anatomic features of the tibial plateau predict outcomes of ACL reconstruction within 7 years after surgery. Am J Sports Med. 2019:47(2):303–311. PubMed ID: 30640519. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Orchard J, Seward H, McGivern J, Hood S. Rainfall, evaporation and the risk of non-contact anterior cruciate ligament injury in the Australian Football League. Med J Aust. 1999;170(7):304–306. PubMed ID: 10327970

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Orchard JW, Powell JW. Risk of knee and ankle sprains under various weather conditions in American football. Med Sci Sports Exerc. 2003;35(7):1118–1123. PubMed ID: 12840631 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA. Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. J Bone Joint Surg Am. 2008;90(4):815–823. PubMed ID: 18381320 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):1123–1130. PubMed ID: 17468378 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Nessler T, Denney L, Sampley J. ACL injury prevention: what does research tell us? Curr Rev Musculoskelet Med. 2017;10(3):281–288. PubMed ID: 28656531 doi:

  • 17.

    Nagelli CV, Wordeman SC, Di Stasi S, Hoffman J, Marulli T, Hewett TE. Neuromuscular training improves biomechanical deficits at the knee in anterior cruciate ligament-reconstructed athletes [published online ahead of print February 7, 2019]. Clin J Sport Med. 2019. PubMed ID: 30747746 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Petushek EJ, Sugimoto D, Stoolmiller M, Smith G, Myer GD. Evidence-based best-practice guidelines for preventing anterior cruciate ligament injuries in young female athletes: a systematic review and meta-analysis. Am J Sports Med. 2019;47(7):1744–1753. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstrom PA, Pope MH. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med. 1995;23(1):24–34. PubMed ID: 7726347 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Draganich LF, Vahey JW. An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces. J Orthop Res. 1990;8(1):57–63. PubMed ID: 2293634 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech. 1999;32(4):395–400. PubMed ID: 10213029 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Luque-Seron JA, Medina-Porqueres I. Anterior cruciate ligament strain in vivo: a systematic review. Sports Health. 2016;8(5):451–455. PubMed ID: 27418161 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am J Sports Med. 2007;35(3):368–373. PubMed ID: 17267766 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Barrack RL, Skinner HB, Buckley SL. Proprioception in the anterior cruciate deficient knee. Am J Sports Med. 1989;17(1):1–6. PubMed ID: 2929825 doi:

  • 25.

    Katayama M, Higuchi H, Kimura M, et al. Proprioception and performance after anterior cruciate ligament rupture. Int Orthop. 2004;28(5):278–281. PubMed ID: 15338203 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Beard DJ, Kyberd PJ, Fergusson CM, Dodd CA. Proprioception after rupture of the anterior cruciate ligament. An objective indication of the need for surgery? J Bone Joint Surg Br. 1993;75(2):311–315. PubMed ID: 8444956 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Broglio SP, Sosnoff JJ, Rosengren KS, McShane K. A comparison of balance performance: computerized dynamic posturography and a random motion platform. Arch Phys Med Rehabil. 2009;90(1):145–150. PubMed ID: 19154841 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Brophy RH, Staples JR, Motley J, Blalock R, Steger-May K, Halstead M. Young females exhibit decreased coronal plane postural stability compared to young males. HSS J. 2016;12(1):26–31. PubMed ID: 26855624 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Larkin B, Nyazee H, Motley J, Nunley RM, Clohisy JC, Barrack RL. Hip resurfacing does not improve proprioception compared with THA. Clin Orthop Relat Res. 2014;472(2):555–561. PubMed ID: 23728886 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Louer CR, Boone SL, Guthrie AK, Motley JR, Calfee RP, Wall LB. Postural stability in older adults with a distal radial fracture. J Bone Joint Surg Am. 2016;98(14):1176–1182. PubMed ID: 27440565 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    The female ACL: why is it more prone to injury? J Orthop. 2016;13(2):A1–A4. PubMed ID: 27053841 doi:

  • 32.

    Huston LJ, Wojtys EM. Neuromuscular performance characteristics in elite female athletes. Am J Sports Med. 1996;24(4):427–436. PubMed ID: 8827300 doi:

  • 33.

    Marx RG, Stump TJ, Jones EC, Wickiewicz TL, Warren RF. Development and evaluation of an activity rating scale for disorders of the knee. Am J Sports Med. 2001;29(2):213–218. PubMed ID: 11292048 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Dhillon MS, Bali K, Prabhakar S. Differences among mechanoreceptors in healthy and injured anterior cruciate ligaments and their clinical importance. Muscles Ligaments Tendons J. 2012;2(1):38–43. PubMed ID: 23738272

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Iwasa J, Ochi M, Uchio Y, Adachi N, Kawasaki K. Decrease in anterior knee laxity by electrical stimulation of normal and reconstructed anterior cruciate ligaments. J Bone Joint Surg Br. 2006;88(4):477–483. PubMed ID: 16567782 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Schutte MJ, Dabezies EJ, Zimny ML, Happel LT. Neural anatomy of the human anterior cruciate ligament. J Bone Joint Surg Am. 1987;69(2):243–247. PubMed ID: 3805085 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Solomonow M, Baratta R, Zhou BH, et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med. 1987;15(3):207–213. PubMed ID: 3618871 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Bali K, Dhillon MS, Vasistha RK, Kakkar N, Chana R, Prabhakar S. Efficacy of immunohistological methods in detecting functionally viable mechanoreceptors in the remnant stumps of injured anterior cruciate ligaments and its clinical importance. Knee Surg Sports Traumatol Arthrosc. 2012;20(1):75–80. PubMed ID: 21541706 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Dhillon MS, Bali K, Vasistha RK. Immunohistological evaluation of proprioceptive potential of the residual stump of injured anterior cruciate ligaments (ACL). Int Orthop. 2010;34(5):737–741. PubMed ID: 20135121 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Kim SH, Chun CH, Chun KC, Jo HJ, Kim KM. Histological assessment of mechanoreceptors in Achilles allografts after anterior cruciate ligament reconstruction. Am J Sports Med. 2012;40(9):2061–2065. PubMed ID: 22837431 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Lee BI, Min KD, Choi HS, et al. Immunohistochemical study of mechanoreceptors in the tibial remnant of the ruptured anterior cruciate ligament in human knees. Knee Surg Sports Traumatol Arthrosc. 2009;17(9):1095–1101. PubMed ID: 19533097 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Catalfamo PF, Aguiar G, Curi J, Braidot A. Anterior cruciate ligament injury: compensation during gait using hamstring muscle activity. Open Biomed Eng J. 2010;4:99–106. PubMed ID: 20721326 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Risberg MA, Holm I, Myklebust G, Engebretsen L. Neuromuscular training versus strength training during first 6 months after anterior cruciate ligament reconstruction: a randomized clinical trial. Phys Ther. 2007;87(6):737–750. PubMed ID: 17442840 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Chmielewski TL, Hurd WJ, Snyder-Mackler L. Elucidation of a potentially destabilizing control strategy in ACL deficient non-copers. J Electromyogr Kinesiol. 2005;15(1):83–92. PubMed ID: 15642656 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Friemert B, Bumann-Melnyk M, Faist M, Schwarz W, Gerngross H, Claes L. Differentiation of hamstring short latency versus medium latency responses after tibia translation. Exp Brain Res. 2005;160(1):1–9. PubMed ID: 15322783 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Herrington L, Fowler E. A systematic literature review to investigate if we identify those patients who can cope with anterior cruciate ligament deficiency. Knee. 2006;13(4):260–265. PubMed ID: 16806942 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 234 234 136
Full Text Views 10 10 5
PDF Downloads 4 4 2