Single-Leg Jump Performance Before and After Exercise in Healthy and Anterior Cruciate Ligament Reconstructed Individuals

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context: Many clinicians measure lower-extremity symmetry after anterior cruciate ligament reconstruction (ACLR); however, testing is completed in a rested state rather than postexercise. Testing postexercise may better model conditions under which injury occurs. Objective: To compare changes in single-leg performance in healthy and individuals with history of ACLR before and after exercise. Design: Repeated-measures case-control. Setting: Laboratory. Patients: Fifty-two subjects (25 control and 27 ACLR). Intervention: Thirty minutes of exercise. Main Outcome Measures: Limb symmetry and involved limb performance (nondominant for healthy) for single-leg hop, ground contact time, and jump height during the 4-jump test. Cohen d effect sizes were calculated for all differences identified using a repeated-measures analysis of variance. Results: Healthy controls hopped farther than ACLR before (d = 0.65; confidence interval [CI], 0.09 to 1.20) and after exercise (d = 0.60; CI, 0.04 to 1.15). Those with ACLR had longer ground contact time on the reconstructed limb compared with the uninvolved limb after exercise (d = 0.53; CI, −0.02 to 1.09), and the reconstructed limb had greater ground contact time compared with the healthy control limb after exercise (d = 0.38; CI, −0.21 to 0.73). ACLR were less symmetrical than healthy before (d = 0.38; CI, 0.17 to 0.93) and after exercise (d = 0.84; CI, 0.28 to 1.41), and the reconstructed limb demonstrated decreased jump height compared with the healthy control limbs before (d = 0.75; CI, 0.19 to 1.31) and after exercise (d = 0.79; CI, 0.23 to 1.36). Conclusions: ACLR became more symmetric, which may be from adaptations of the reconstructed limb after exercise. Changes in performance and symmetry may provide additional information regarding adaptations to exercise after reconstruction.

Bookbinder, Hertel, and Hart are with the Department of Kinesiology, University of Virginia, Charlottesville, VA. Slater is with the Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL. Simpson is with the Department of Biomedical Engineering, University of Virginia, Charlottesville, VA.

Slater (lindsay.slater@northwestern.edu) is corresponding author.
Journal of Sport Rehabilitation
Article Sections
References
  • 1.

    Dick RPutukian MAgel JEvans TAMarshall SW. Descriptive epidemiology of collegiate women’s soccer injuries: National Collegiate Athletic Association injury surveillance system, 1988–1989 through 2002–2003. J Athl Train. 2007;42(2):278285. PubMed ID: 17710177

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Boden BPDean GSFeagin JAGarrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573578. PubMed ID: 10875418 doi:

  • 3.

    Wiggins AJGrandhi RKSchneider DKStanfield DWebster KEMyer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(7):18611876. PubMed ID: 26772611 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kaeding CCPedroza ADReinke EKHuston LJConsortium MSpindler KP. Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: a prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med. 2015;43(7):15831590. PubMed ID: 25899429 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Paterno MVRauh MJSchmitt LCFord KRHewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):15671573. PubMed ID: 24753238 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Myer GDSchmitt LCBrent JLet al. Utilization of modified NFL combine testing to identify functional deficits in athletes following ACL reconstruction. J Orthop Sports Phys Ther. 2011;41(6):377387. PubMed ID: 21289456 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Xergia SAPappas EZampeli FGeorgiou SGeorgoulis AD. Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2013;43(3):154162. PubMed ID: 23322072 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Reid ABirmingham TBStratford PWAlcock GKGiffin JR. Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther. 2007;87(3):337349. PubMed ID: 17311886 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Schmitt LCPaterno MVHewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):750759. PubMed ID: 22813542 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ekstrand JHagglund MWalden M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2009;45(7):553558. PubMed ID: 19553225 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kuenze CHertel JHart JM. Effects of exercise on lower extremity muscle function after anterior cruciate ligament reconstruction. J Sport Rehabil. 2013;22(1):3340. PubMed ID: 23307572 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Webster KEAustin DCFeller JAClark RAMcClelland JA. Symmetry of squatting and the effect of fatigue following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):32083213. PubMed ID: 24934927 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Drechsler WICramp MCScott OM. Changes in muscle strength and EMG median frequency after anterior cruciate ligament reconstruction. Eur J Appl Physiol. 2006;98(6):613623. PubMed ID: 17036217 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Snyder-Mackler LBinder-Macleod SAWilliams PR. Fatigability of human quadriceps femoris muscle following anterior cruciate ligament reconstruction. Med Sci Sport Exer. 1993;25(7):783789. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Menzer HSlater LVDiduch Det al. The utility of objective strength and functional performance to predict subjective outcomes after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2017;5(12):2325967117744758. PubMed ID: 29318168 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Stanley LEKerr ZYDompier TPPadua DA. Sex differences in the incidence of anterior cruciate ligament, medial collateral ligament, and meniscal injuries in collegiate and high school sports: 2009–2010 through 2013–2014. Am J Sports Med. 2016;44(6):15651572. PubMed ID: 26940226 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Marx RGStump TJJones ECWickiewicz TLWarren RF. Development and evaluation of an activity rating scale for disorders of the knee. Am J Sports Med. 2001;29(2):213218. PubMed ID: 11292048 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Irrgang JJAnderson AFBoland ALet al. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med. 2001;29(5):600613. PubMed ID: 11573919 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Haitz KShultz RHodgins MMatheson GO. Test–retest and interrater reliability of the functional lower extremity evaluation. J Orthop Sports Phys Ther. 2014;44(12):947954. PubMed ID: 25394690 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Slater LVSimpson ASBlemker SSet al. Biomechanical adaptations during running differ based on type of exercise and fitness level. Gait Posture. 2018;60:3540. PubMed ID: 29153477 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Slater LVBaker RWeltman ALHertel JSaliba SAHart JM. Activity monitoring in men’s college soccer: a single season longitudinal study. Res Sports Med. 2018;26(2):178190. PubMed ID: 29361835 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):9298. PubMed ID: 5523831

  • 23.

    Durlak JA. How to select, calculate, and interpret effect sizes. J Pediatr Psychol. 2009;34(9):917928. PubMed ID: 19223279 doi:

  • 24.

    Chang EKim KMHertel JHart JM. Repeated bouts of exercise in patients with anterior cruciate ligament reconstruction. Med Sci Sport Exer. 2014;46(4):769775. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    McHugh MPTyler TFNicholas SJBrowne MGGleim GW. Electromyographic analysis of quadriceps fatigue after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2001;31(1):2532. PubMed ID: 11204793 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bryant ALKelly JHohmann E. Neuromuscular adaptations and correlates of knee functionality following ACL reconstruction. J Orthop Res. 2008;26(1):126135. PubMed ID: 17676614 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Noehren BAndersen AHardy Pet al. Cellular and morphological alterations in the vastus lateralis muscle as the result of ACL injury and reconstruction. J Bone Joint Surg Am. 2016;98(18):15411547. PubMed ID: 27655981 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Paterno MVFord KRMyer GDHeyl RHewett TE. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sport Med. 2007;17(4):258262. PubMed ID: 17620778 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    de Fontenay BPArgaud SBlache YMonteil K. Motion alterations after anterior cruciate ligament reconstruction: comparison of the injured and uninjured lower limbs during a single-legged jump. J Athl Train. 2014;49(3):311316. PubMed ID: 24840584 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Knezevic OMMirkov DMKadija MNedeljkovic AJaric S. Asymmetries in explosive strength following anterior cruciate ligament reconstruction. Knee. 2014;21(6):10391045. PubMed ID: 25112209 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mirkov DMKnezevic OMMaffiuletti NAKadija MNedeljkovic AJaric S. Contralateral limb deficit after ACL-reconstuction: an analysis of early and late phase of rate of force development. J Sport Sci. 2017;35(5):435440. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Chmielewski TLMyer GDKauffman DTillman SM. Plyometric exercise in the rehabilitation of athletes: physiological responses and clinical application. J Orthop Sports Phys Ther. 2006;36(5):308319. PubMed ID: 16715831 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Arampatzis ASchade FWalsh MBrüggemann GP. Influence of leg stiffness and its effect on myodynamic jumping performance. J Electromyogr Kinesiol. 2001;11(5):355364. PubMed ID: 11595555 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Bonfim TRJansen Paccola CABarela JA. Proprioceptive and behavior impairments in individuals with anterior cruciate ligament reconstructed knees. Arch Phys Med Rehabil. 2003;84(8):12171223. PubMed ID: 12917863 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Wilson JMFlanagan EP. The role of elastic energy in activities with high force and power requirements: a brief review. J Strength Cond Res. 2008;22(5):17051715. PubMed ID: 18714212 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Wüst RCMorse CIde Haan AJones DADegens H. Sex differences in contractile properties and fatigue resistance of human skeletal muscle. Exp Physiol. 2008;93(7):843850. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Robinson DMRobinson SMHume PAHopkins WG. Training intensity of elite male distance runners. Med Sci Sport Exer. 1991;23(9):10781082. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Kuenze CHertel JWeltman ADiduch DRSaliba SHart JM. Jogging biomechanics after exercise in individuals with ACL-reconstructed knees. Med Sci Sport Exer. 2014;46(6):10671076. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 161 161 161
Full Text Views 10 10 10
PDF Downloads 5 5 5
Altmetric Badge
PubMed
Google Scholar