Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Foam rolling (FR) has been developed into a popular intervention and has been established in various sports disciplines. However, its effects on target tissue, including changes in stiffness properties, are still poorly understood. Objective: To investigate muscle-specific and connective tissue-specific responses after FR in recreational athletes with different FR experience. Design: Case series. Setting: Laboratory environment. Participants: The study was conducted with 40 participants, consisting of 20 experienced (EA) and 20 nonexperienced athletes (NEA). Intervention: The FR intervention included 5 trials per 45 seconds of FR of the lateral thigh in the sagittal plane with 20 seconds of rest between each trial. Main Outcome Measures: Acoustic radiation force impulse elastosonography values, represented as shear wave velocity, were obtained under resting conditions (t0) and several times after FR exercise (0 min [t1], 30 min [t2], 6 h [t3], and 24 h [t4]). Data were assessed in superficial and deep muscle (vastus lateralis muscle; vastus intermedius muscle) and in connective tissue (iliotibial band). Results: In EA, tissue stiffness of the iliotibial band revealed a significant decrease of 13.2% at t1 (P ≤ .01) and 12.1% at t3 (P = .02). In NEA, a 6.2% increase of stiffness was found at t1, which was not significantly different to baseline (P = .16). For both groups, no significant iliotibial band stiffness changes were found at further time points. Also, regarding muscle stiffness, no significant changes were detected at any time for EA and NEA (P > .05). Conclusions: This study demonstrates a significant short-term decrease of connective tissue stiffness in EA, which may have an impact on the biomechanical output of the connective tissue. Thus, FR effects on tissue stiffness depend on the athletes’ experience in FR, and existing studies have to be interpreted cautiously in the context of the enrolled participants.

Mayer and Hoppe contributed equally to this work. Mayer, Huettel, Forst, and Hotfiel are with the Department of Orthopedic Surgery, Friedrich–Alexander University Erlangen–Nuremberg, Erlangen, Germany. Hoppe is with the Institute of Movement and Training Science I, University of Leipzig, Leipzig, Germany. Freiwald is with the Department of Movement and Training Science, University of Wuppertal, Wuppertal, Germany. Engelhardt, Grim, and Hotfiel are with the Department of Orthopedic, Trauma and Hand Surgery, Klinikum Osnabrück, Osnabrück, Germany. Heiss is with the Department of Radiology, University Hospital Erlangen, Erlangen, Germany. Lutter is with the Department of Orthopedics, University Medicine Rostock, Rostock, Germany.

Hotfiel (Thilo.Hotfiel@fau.de) is corresponding author.
  • 1.

    Monteiro ER, Vigotsky A, Škarabot J, et al. Acute effects of different foam rolling volumes in the interset rest period on maximum repetition performance. Hong Kong Physiother J. 2017;36:57–62. PubMed ID: 30931039 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fleckenstein J, Wilke J, Vogt L, Banzer W. Preventive and regenerative foam rolling are equally effective in reducing fatigue-related impairments of muscle function following exercise. J Sports Sci Med. 2017;16(4):474–479. PubMed ID: 29238246

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    MacDonald GZ, Penney MD, Mullaley ME, et al. An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. J Strength Cond Res. 2013;27(3):812–821. PubMed ID: 22580977 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Giovanelli N, Vaccari F, Floreani M, et al. Short-term effects of rolling massage on energy cost of running and power of the lower limbs. Int J Sports Physiol Perform. 2018;13(10):1337–1343. PubMed ID: 29745784 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Romero-Moraleda B, La Touche R, Lerma-Lara S, et al. Neurodynamic mobilization and foam rolling improved delayed-onset muscle soreness in a healthy adult population: a randomized controlled clinical trial. PeerJ. 2017;5:e3908. PubMed ID: 29043110 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Kalichman L, Ben David C. Effect of self-myofascial release on myofascial pain, muscle flexibility, and strength: a narrative review. J Bodyw Mov Ther. 2017;21(2):446–451. PubMed ID: 28532889 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Freiwald J, Baumgart C, Kühnemann M, Hoppe MW. Foam-rolling in sport and therapy — potential benefits and risks. Sports Orthop Traumatol. 2016;32(3):267–275. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Schroeder AN, Best TM. Is self myofascial release an effective preexercise and recovery strategy? A literature review. Curr Sports Med Rep. 2015;14(3):200–208. PubMed ID: 25968853 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Peacock CA, Krein DD, Silver TA, Sanders GJ, Von Carlowitz KA. An acute bout of self-myofascial release in the form of foam rolling improves performance testing. Int J Exerc Sci. 2014;7(3):202–211. PubMed ID: 27182404

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Peacock CA, Krein DD, Antonio J, Sanders GJ, Silver TA, Colas M. Comparing acute bouts of sagittal plane progression foam rolling vs frontal plane progression foam rolling. J Strength Cond Res. 2015;29(8):2310–2315. PubMed ID: 25647651 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    de Souza A, Sanchotene CG, da Silva Lopes CM, et al. Acute effect of two self-myofascial release protocols on hip and ankle range of motion. J Sport Rehabil. 2019;28(2):159–164. PubMed ID: 29140186 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Cheatham SW, Kolber MJ, Cain M, Lee M. The effects of self-myofascial release using a foam roll or roller massager on joint range of motion, muscle recovery, and performance: a systematic review. Int J Sports Phys Ther. 2015;10(6):827–838. PubMed ID: 26618062

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Wilke J, Niemeyer P, Niederer D, Schleip R, Banzer W. Influence of foam rolling velocity on knee range of motion and tissue stiffness: a randomized, controlled crossover trial. J Sport Rehabil. 2019;28(7):711–715. PubMed ID: 29952699 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Macdonald GZ, Button DC, Drinkwater EJ, Behm DG. Foam rolling as a recovery tool after an intense bout of physical activity. Med Sci Sports Exerc. 2014;46(1):131–142. PubMed ID: 24343353 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jay K, Sundstrup E, Sondergaard SD, et al. Specific and cross over effects of massage for muscle soreness: randomized controlled trial. Int J Sports Phys Ther. 2014;9(1):82–91. PubMed ID: 24567859

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Healey KC, Hatfield DL, Blanpied P, Dorfman LR, Riebe D. The effects of myofascial release with foam rolling on performance. J Strength Cond Res. 2014;28(1):61–68. PubMed ID: 23588488 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Beardsley C, Skarabot J. Effects of self-myofascial release: a systematic review. J Bodyw Mov Ther. 2015;19(4):747–758. PubMed ID: 26592233 doi:

  • 18.

    Monteiro ER, Vigotsky AD, Novaes JDS, Skarabot J. Acute effects of different anterior thigh self-massage on hip range-of-motion in trained men. Int J Sports Phys Ther. 2018;13(1):104–113. PubMed ID: 29484247 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cheatham SW, Kolber MJ, Cain M. Comparison of video-guided, live instructed, and self-guided foam roll interventions on knee joint range of motion and pressure pain threshold: a randomized controlled trial. Int J Sports Phys Ther. 2017;12(2):242–249. PubMed ID: 28515979

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kelly S, Beardsley C. Specific and cross-over effects of foam rolling on ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2016;11(4):544–551. PubMed ID: 27525179

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Freiwald J, Baumgart C, Kühnemann M, Hoppe MW. Foam-rolling in sport and therapy– potential benefits and risks. Sports Orthop Traumatol. 2016;32(3):258–266. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bradbury-Squires DJ, Noftall JC, Sullivan KM, Behm DG, Power KE, Button DC. Roller-massager application to the quadriceps and knee-joint range of motion and neuromuscular efficiency during a lunge. J Athl Train. 2015;50(2):133–140. PubMed ID: 25415414 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mohr AR, Long BC, Goad CL. Effect of foam rolling and static stretching on passive hip-flexion range of motion. J Sport Rehabil. 2014;23(4):296–299. PubMed ID: 24458506 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hotfiel T, Swoboda B, Krinner S, et al. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral doppler and power doppler ultrasound. J Strength Cond Res. 2017;31(4):893–900. PubMed ID: 27749733 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Pearcey GE, Bradbury-Squires DJ, Kawamoto JE, Drinkwater EJ, Behm DG, Button DC. Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J Athl Train. 2015;50(1):5–13. PubMed ID: 25415413 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Krause F, Wilke J, Niederer D, Vogt L, Banzer W. Acute effects of foam rolling on passive tissue stiffness and fascial sliding: study protocol for a randomized controlled trial. Trials. 2017;18(1):114. PubMed ID: 28274273 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Martínez-Cabrera FI, Núñez-Sánchez FJ. Acute effect of a foam roller on the mechanical properties of the rectus femoris based on tensiomyography in soccer players. Int J Hum Mov Sports Sci. 2016;4:26–32.

    • Search Google Scholar
    • Export Citation
  • 28.

    Morales-Artacho AJ, Lacourpaille L, Guilhem G. Effects of warm-up on hamstring muscles stiffness: cycling vs foam rolling. Scand J Med Sci Sports. 2017;27(12):1959–1969. PubMed ID: 28124382 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kubo K, Kanehisa H, Fukunaga T. Effects of viscoelastic properties of tendon structures on stretch – shortening cycle exercise in vivo. J Sports Sci. 2005;23(8):851–860. PubMed ID: 16195037 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Zugel M, Maganaris CN, Wilke J, et al. Fascial tissue research in sports medicine: from molecules to tissue adaptation, injury and diagnostics. Br J Sports Med. 2018;52(23):1497. PubMed ID: 30072398 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Bushell JE, Dawson SM, Webster MM. Clinical relevance of foam rolling on hip extension angle in a functional lunge position. J Strength Cond Res. 2015;29(9):2397–2403. PubMed ID: 25734777 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Markovic G. Acute effects of instrument assisted soft tissue mobilization vs foam rolling on knee and hip range of motion in soccer players. J Bodyw Mov Ther. 2015;19(4):690–696. PubMed ID: 26592226 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Okamoto T, Masuhara M, Ikuta K. Acute effects of self-myofascial release using a foam roller on arterial function. J Strength Cond Res. 2014;28(1):69–73. PubMed ID: 23575360 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Schleip R, Müller DG. Training principles for fascial connective tissues: scientific foundation and suggested practical applications. J Bodyw Mov Ther. 2013;17(1):103–115. PubMed ID: 23294691 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hotfiel T, Kellermann M, Swoboda B, et al. Application of acoustic radiation force impulse (ARFI) elastography in imaging of delayed onset muscle soreness (DOMS): a comparative analysis with 3T MRI. J Sport Rehabil. 2018;27(4):348–356. PubMed ID: 28513280 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Cho KH, Nam JH. Evaluation of stiffness of the spastic lower extremity muscles in early spinal cord injury by acoustic radiation force impulse imaging. Ann Rehabil Med. 2015;39(3):393–400. PubMed ID: 26161345 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    D’Onofrio M, Crosara S, Canestrini S, et al. Virtual analysis of pancreatic cystic lesion fluid content by ultrasound acoustic radiation force impulse quantification. J Ultrasound Med. 2013;32(4):647–651. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Bota S, Sporea I, Sirli R, Popescu A, Gradinaru-Tascau O. How useful are ARFI elastography cut-off values proposed by meta-analysis for predicting the significant fibrosis and compensated liver cirrhosis? Med Ultrason. 2015;17(2):200–205. PubMed ID: 26052571 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Pfeifer L, Zopf S, Siebler J, et al. Prospective evaluation of acoustic radiation force impulse (ARFI) elastography and high-frequency b-mode ultrasound in compensated patients for the diagnosis of liver fibrosis/cirrhosis in comparison to mini-laparoscopic biopsy. Ultraschall Med. 2015;36(6):581–589. PubMed ID: 26529354 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Urbaniak GC, Plous S. 2013. Research Randomizer. http://www.randomizer.org Accessed October 12, 2017.

  • 41.

    Hotfiel T, Heiss R, Janka R, et al. Acoustic radiation force impulse tissue characterization of the anterior talofibular ligament: a promising noninvasive approach in ankle imaging. Phys Sportsmed. 2018;46(4):435–440. PubMed ID: 29886782 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Brandenburg JE, Eby SF, Song P, et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Arch Phys Med Rehabil. 2014;95(11):2207–2219. PubMed ID: 25064780 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Peetrons P. Ultrasound of muscles. Eur Radiol. 2002;12(1):35–43. PubMed ID: 11868072 doi:

  • 44.

    Heiss R, Kellermann M, Swoboda B, et al. Effect of compression garments on the development of delayed-onset muscle soreness: a multimodal approach using contrast-enhanced ultrasound and acoustic radiation force impulse elastography. J Orthop Sports Phys Ther. 2018:48(11):887–894. PubMed ID: 29895236 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Bruno C, Minniti S, Bucci A, Pozzi Mucelli R. ARFI: from basic principles to clinical applications in diffuse chronic disease—a review. Insights Imaging. 2016;7(5):735–746. PubMed ID: 27553006 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Yavuz A, Bora A, Bulut MD, et al. Acoustic radiation force impulse (ARFI) elastography quantification of muscle stiffness over a course of gradual isometric contractions: a preliminary study. Med Ultrason. 2015;17(1):49–57. PubMed ID: 25745658 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Hollerieth K, Gassmann B, Wagenpfeil S, et al. Preclinical evaluation of acoustic radiation force impulse measurements in regions of heterogeneous elasticity. Ultrasonography. 2016;35(4):345–352. PubMed ID: 27599889 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Rennefeld C, Wiech K, Schoell ED, Lorenz J, Bingel U. Habituation to pain: further support for a central component. Pain. 2010;148(3):503–508. PubMed ID: 20097005 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Bauch EM, Andreou C, Rausch VH, Bunzeck N. Neural habituation to painful stimuli is modulated by dopamine: evidence from a pharmacological fMRI Study. Front Hum Neurosci. 2017;11:630. PubMed ID: 29311880 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Hotfiel T, Freiwald J, Hoppe MW, et al. Advances in delayed-onset muscle soreness (DOMS): part I: pathogenesis and diagnostics. Sportverletz Sportschaden. 2018;32(4):243–250. PubMed ID: 30537791 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Fredericson M, Wolf C. Iliotibial band syndrome in runners. Sports Med. 2005;35(5):451–459. PubMed ID: 15896092 doi:

  • 52.

    Fredericson M, Weir A. Practical management of iliotibial band friction syndrome in runners. Clin J Sport Med. 2006;16(3):261–268. PubMed ID: 16778549 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Bojsen-Møller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol. 2005;99(3):986–994. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Smeulders MJ, Kreulen M. Myofascial force transmission and tendon transfer for patients suffering from spastic paresis: a review and some new observations. J Electromyogr Kinesiol. 2007;17(6):644–656. PubMed ID: 17369052 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Kubo K, Kawakami Y, Fukunaga T. Influence of elastic properties of tendon structures on jump performance in humans. J Appl Physiol. 1999;87(6):2090–2096. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Avela J, Komi PV. Interaction between muscle stiffness and stretch reflex sensitivity after long-term stretch-shortening cycle exercise. Muscle Nerve. 1998;21(9):1224–1227. PubMed ID: 9703454 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Lichtwark GA, Wilson AM. Is achilles tendon compliance optimised for maximum muscle efficiency during locomotion? J Biomech. 2007;40(8):1768–1775. PubMed ID: 17101140 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Turner AN, Jeffreys I. The stretch-shortening cycle: proposed mechanisms and methods for enhancement. Strength Cond J. 2010;32(4):87–99. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 683 683 136
Full Text Views 23 23 3
PDF Downloads 9 9 2