Myoelectric Responses of Lower-Body Muscles Performing Squat and Lunge Exercise Variations Adopting Visual Feedback With a Laser Sensor

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Study design: Cross-over study. Context: The squat, single-leg squat, forward lunge, and reverse lunge are fundamental movements often performed in activities of daily living, sports competitions, and sport-specific training. Objective: The purpose of this study was to investigate the effect of visual feedback with a laser sensor (VFLS) versus a control condition on the myoelectric activity (surface electromyography [sEMG]) of the vastus medialis oblique (VMO), vastus lateralis, gluteus medius (Gmed), and erector spinae muscles during the performance of several squat variations with bodyweight. Methods: Nineteen female college students (20 [2.5] y, 165.3 [10.2] cm, 66.4 [4.1] kg, 2 [1.2] y of resistance training experience) with a background in strength or sports training volunteered to participate in this study. Over 4 separate visits, subjects performed 2 sets of 10 repetitions of a squat variation exercise in random order (ie, squat, single-leg squat, forward lunge, and reverse lunge). The first set of a given squat variation condition was considered a control set, and then after 3-minute rest, a second set was performed with VFLS. Results: Significant decreases in VMO and Gmed myoelectric activity were observed during the VFLS set versus the control set for the forward lunge exercise (P = .03). No differences were observed between the control set and VFLS set in the sEMG normalized signal for all muscles analyzed for the squat and single-leg squat, respectively. However, the sample entropy of the sEMG signal for the erector spinae became more irregular during the VFLS set versus the control set for the squat exercise (P = .01), whereas the Gmed presented a more irregular sEMG signal during the VFLS set versus the control set for the single-leg squat (P = .08). Conclusion: Laser sensor biofeedback may induce significant decreases in VMO and Gmed activation performing forward lunge exercise. Therefore, laser sensor biofeedback may induce a reduction in muscle activity of neutralizers muscles during a few squat bodyweight variations (bilateral, single-leg, forward, and reverse lunge).

Paz, Santana, and Miranda are with the School of Physical Education and Sports, Rio de Janeiro Federal University, Rio de Janeiro, Brazil. Paz, Almeida, Ruiz, Casseres, Xavier, Lucas, and Santana are with the Biodynamic laboratory of Exercise, Health, and Performance—BIODESA, Castelo Branco University, Rio de Janeiro, Brazil. Paz and Santana are with Kinesiology Center of Performance, Biodesp Institute, Rio de Janeiro, Brazil. Bonnette is with SPORT Center, Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA. Willardson is with Health and Human Performance Department, Montana State University Billings, MT, USA.

Paz (gabriel.andrade.paz@gmail.com) is corresponding author.
  • 1.

    McKeown I, Taylor-McKeown K, Woods C, Ball N. Athletic ability assessment: a movement assessment protocol for athletes. Int J Sports Phys Ther. 2014;9(7):862–873. PubMed ID: 25540702

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kritz M, Cronin J, Hume P. Using the body weight forward lunge to screen an Athlete’s Lunge Pattern. Strength Cond J. 2009;31(6):15–24. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes: a prospective study. Am J Sports Med. 1999;27(6):699–706. PubMed ID: 10569353 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24(6):765–773. PubMed ID: 8947398 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Iguchi J, Watanabe Y, Kimura M, et al. Risk factors for injury among Japanese collegiate players of American football based on performance test results. J Strength Cond Res. 2016;30(12):3405–3411. PubMed ID: 27870698 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Paz GA, Maia Mde F, Farias D, et al. Kinematic analysis of knee valgus during drop vertical jump and forward step-up in young basketball players. Int J Sports Phys Ther. 2016;11(2):212–219.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Cowling EJ, Steele JR, McNair PJ. Effect of verbal instructions on muscle activity and risk of injury to the anterior cruciate ligament during landing. Br J Sports Med. 2003;37(2):126–130. PubMed ID: 12663353 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McNair PJ, Prapavessis H, Callender K. Decreasing landing forces: effect of instruction. Br J Sports Med. 2000;34(4):293–296. PubMed ID: 10953904 doi:

  • 9.

    Prapavessis H, McNair PJ. Effects of instruction in jumping technique and experience jumping on ground reaction forces. J Orthop Sports Phys Ther. 1999;29(6):352–356. PubMed ID: 10370919 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mizner RL, Kawaguchi JK, Chmielewski TL. Muscle strength in the lower extremity does not predict postinstruction improvements in the landing patterns of female athletes. J Orthop Sports Phys Ther. 2008;38(6):353–361. PubMed ID: 18515963 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Milner CE, Fairbrother JT, Srivatsan A, Zhang S. Simple verbal instruction improves knee biomechanics during landing in female athletes. Knee. 2012;19(4):399–403. PubMed ID: 21676618 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Munro A, Herrington L. The effect of videotape augmented feedback on drop jump landing strategy: implications for anterior cruciate ligament and patellofemoral joint injury prevention. Knee. 2014;21(5):891–895. PubMed ID: 24950995 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Myer GD, Stroube BW, DiCesare CA, et al. Augmented feedback supports skill transfer and reduces high-risk injury landing mechanics: a double-blind, randomized controlled laboratory study. Am J Sports Med. 2013;41(3):669–677. PubMed ID: 23371471 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lin TH, Denomme A, Ranganathan R. Learning alternative movement coordination patterns using reinforcement feedback. Exp Brain Res. 2018;236(5):1395–1407. PubMed ID: 29536148 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Padua DA, DiStefano LJ, Beutler AI, de la Motte SJ, DiStefano MJ, Marshall SW. The landing error scoring system as a screening tool for an Anterior Cruciate Ligament Injury-Prevention Program in Elite-Youth Soccer Athletes. J Athl Train. 2015;50(6):589–595. PubMed ID: 25811846 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hegedus EJ, McDonough SM, Bleakley C, Baxter D, Cook CE. Clinician-friendly lower extremity physical performance tests in athletes: a systematic review of measurement properties and correlation with injury. Part 2--the tests for the hip, thigh, foot and ankle including the star excursion balance test. Br J Sports Med. 2015;49(10):649–656. PubMed ID: 25614536 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Doherty C, Bleakley C, Hertel J, et al. Coordination and symmetry patterns during the drop vertical jump, 6-months after first-time lateral ankle sprain. J Orthop Res. 2015;33(10):1537–1544. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A. 2001;54(4):1143–1154. PubMed ID: 11765737 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wulf G, McConnel N, Gartner M, Schwarz A. Enhancing the learning of sport skills through external-focus feedback. J Mot Behav. 2002;34(2):171–182. PubMed ID: 12057890 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wulf G. Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exerc Psychol. 2013;6(1):77–104. doi:

  • 21.

    Fietzer AL, Winstein CJ, Kulig K. Changing one’s focus of attention alters the structure of movement variability. Hum Mov Sci. 2018;62:14–24. PubMed ID: 30218846 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lohse KR, Sherwood DE, Healy AF. How changing the focus of attention affects performance, kinematics, and electromyography in dart throwing. Hum Mov Sci. 2010;29(4):542–555. PubMed ID: 20541275 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lohse KR, Sherwood DE, Healy AF. Neuromuscular effects of shifting the focus of attention in a simple force production task. J Mot Behav. 2011;43(2):173–184. PubMed ID: 21400331 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Gonzalez-Izal M, Malanda A, Navarro-Amezqueta I, et al. EMG spectral indices and muscle power fatigue during dynamic contractions. J Electromyogr Kinesiol. 2010;20(2):233–240. PubMed ID: 19406664 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Paz GA, de Freitas Maia M, Santana HG, Miranda H, Lima V, Willson JD. Knee frontal plane projection angle: a comparison study between drop vertical jump and step-down tests with young volleyball athletes. J Sport Rehabil. 2019;28:153–158. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kendall FP, McCreary EK, Provance PG, Rodgers MM, Romani WA. Muscles, Testing and Function with Posture and Pain. 5th ed. Baltimore, MA: Williams & Wilkins; 2005.

    • Search Google Scholar
    • Export Citation
  • 27.

    Kalmar JM, Cafarelli E. Central Excitability does not limit post fatigue voluntary activation of quadriceps femoris. J Appl Physiol. 2006;100(1):1757–1764. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Tarata MT. Mechanomyography versus electromyography in monitoring the muscular fatigue. Bio Med Eng Online 2003;2:3. doi:

  • 29.

    Barbero M, Merletti R, Rainoldi A. Atlas of Muscle Innervation Zones: Understanding Surface Electromyography and its Applications. Berlin, Germany: Springer-Verlag; 2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Escamilla RF. Knee biomechanics of the dynamic squat exercise. Med Sci Sports Exerc. 2001;33(1):127–141. PubMed ID: 11194098 doi:

  • 31.

    Escamilla RF, Fleisig GS, Zheng N, et al. Effects of technique variations on knee biomechanics during the squat and leg press. Med Sci Sports Exerc. 2001;33(9):1552–1566. PubMed ID: 11528346 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol. Heart Circ Physiol. 2000;278(6):H2039–H2049. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kayfman M, Zurcher U, Sung SP. Entropy of electromyography time series. Phys A: Stat Mech Appl. 2007;386(2):698–707. doi:

  • 34.

    Troiano A, Naddeo F, Sosso E, Camarota G, Merletti R, Mesin L. Assessment of force and fatigue in isometric contractions of the upper trapezius muscle by surface EMG signal and perceived exertion scale. Gait Posture. 2008;28(2):179–186. PubMed ID: 18490165 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Munro A, Herrington L, Carolan M. Reliability of 2-dimensional video assessment of frontal-plane dynamic knee valgus during common athletic screening tasks. J Sport Rehabil. 2012;21(1):7–11. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Khuu S, Musalem LL, Beach TA. Verbal instructions acutely affect drop vertical jump biomechanics-implications for athletic performance and injury risk assessments. J Strength Cond Res. 2015;29(10):2816–2826. PubMed ID: 26398699 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Rhea M. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res. 2004;18(1):918–920.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Bittencourt NF, Ocarino JM, Mendonca LD, Hewett TE, Fonseca ST. Foot and hip contributions to high frontal plane knee projection angle in athletes: a classification and regression tree approach. J Orthop Sports Phys Ther. 2012;42(12):996–1004. PubMed ID: 22990391 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Pereira GR, Leporace G, Chagas D, Furtado LF, Praxedes J, Batista LA. Influence of hip external rotation on hip adductor and rectus femoris myoelectric activity during a dynamic parallel squat. J Strength Cond Res. 2010;24(10):2749–2754. PubMed ID: 20651607 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Yoo WG. Effect of the single-leg, lateral oblique, decline squat exercise on sacroiliac joint pain with knee pain. J Phys Ther Sci. 2016;28(9):2688–2689. PubMed ID: 27799721 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Irish SE, Millward AJ, Wride J, Haas BM, Shum GL. The effect of closed-kinetic chain exercises and open-kinetic chain exercise on the muscle activity of vastus medialis oblique and vastus lateralis. J Strength Cond Res. 2010;24(5):1256–1262. PubMed ID: 20386128 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Bressel E, Willardson JM, Thompson B, Fontana FE. Effect of instruction, surface stability, and load intensity on trunk muscle activity. J Electromyogr Kinesiol. 2009;19(6):e500–e504. PubMed ID: 19054687 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Johnston W, Dolan K, Reid N, Coughlan GF, Caulfield B. Investigating the effects of maximal anaerobic fatigue on dynamic postural control using the Y-Balance Test. J Sci Med Sport / Sports Med Aust. 2018;21(1):103–108. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Herrington L. Knee valgus angle during landing tasks in female volleyball and basketball players. J Strength Cond Res. 2011;25(1):262–266. PubMed ID: 19966588 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Blinch J, Jensen Kouts T. Effects of integrated feedback and movement templates on discrete bimanual movements in simple reaction time. Hum Mov Sci. 2018;60:139–149. PubMed ID: 29890345 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Jegatheeswaran G, Vesia M, Isayama R, Gunraj C, Chen R. Increases in motor cortical excitability during mirror visual feedback of a precision grasp is influenced by vision and movement of the opposite limb. Neurosci Lett. 2018;681:31–36. PubMed ID: 29787788 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. PubMed ID: 15722287 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 283 283 116
Full Text Views 6 6 2
PDF Downloads 1 1 1