Effects of a 4-Week Short-Foot Exercise Program on Gait Characteristics in Patients With Stage II Posterior Tibial Tendon Dysfunction

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Clinically, it has been suggested that increased activation of intrinsic foot muscles may alter the demand of extrinsic muscle activity surrounding the ankle joint in patients with stage II posterior tibial tendon dysfunction. However, there is limited empirical evidence supporting this notion. Objective: The purpose of this study was to investigate the effects of a 4-week short-foot exercise (SFE) on biomechanical factors in patients with stage II posterior tibial tendon dysfunction. Design: Single-group pretest–posttest. Setting: University laboratory. Participants: Fifteen subjects (8 males and 7 females) with stage II posterior tibial tendon dysfunction who had pain in posterior tibial tendon, pronated foot deformity (foot posture index ≥+6), and flexible foot deformity (navicular drop ≥10 mm) were voluntarily recruited. Intervention: All subjects completed a 4-week SFE program (15 repetitions × 5 sets/d and 3 d/wk) of 4 stages (standing with feedback, sitting, double-leg, and one-leg standing position). Main Outcome Measures: Ankle joint kinematics and kinetics and tibialis anterior and fibularis longus muscle activation (% maximum voluntary isometric contraction) during gait were measured before and after SFE program. Cohen d effect size (ES [95% confidence intervals]) was calculated. Results: During the first rocker, tibialis anterior activation decreased at peak plantarflexion (ES = 0.75 [0.01 to 1.49]) and inversion (ES = 0.77 [0.03 to 1.51]) angle. During the second rocker, peak dorsiflexion angle (ES = 0.77 [0.03 to 1.51]) and tibialis anterior activation at peak eversion (ES = 1.57 [0.76 to 2.39]) reduced. During the third rocker, the peak abduction angle (ES = 0.80 [0.06 to 1.54]) and tibialis anterior and fibularis longus activation at peak plantarflexion (ES = 1.34 [0.54 to 2.13]; ES = 1.99 [1.11 to 2.86]) and abduction (ES = 1.29 [0.50 to 2.08]; ES = 1.67 [0.84 to 2.50]) decreased. Conclusions: Our 4-week SFE program may have positive effects on changing muscle activation patterns for tibialis anterior and fibularis longus muscles, although it could not influence their structural deformity and ankle joint moment. It could produce a potential benefit of decreased tibialis posterior activation.

J. Kim, S.C. Lee, and S.Y. Lee are with the Department of Physical Education, Integrative Sports Science Research Laboratory, Yonsei University, Seoul, Republic of Korea. S.C. Lee and S.Y. Lee are also with the Yonsei Institute of Sports Science and Exercise Medicine, Yonsei University, Seoul, Republic of Korea. Chun and Seegmiller are with the Department of Movement Sciences, University of Idaho, Moscow, ID, USA. Jun is with the Department of Physical Education, Dong-A University, Busan, Republic of Korea. K.M. Kim is with the Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, FL, USA.

S.Y. Lee (sylee1@yonsei.ac.kr) is corresponding author.
  • 1.

    Johnson KA, Strom DE. Tibialis posterior tendon dysfunction. Clin Orthop Relat Res. 1989;239:196206.

  • 2.

    Alvarez RG, Marini A, Schmitt C, Saltzman CL. Stage I and II posterior tibial tendon dysfunction treated by a structured nonoperative management protocol: an orthosis and exercise program. Foot Ankle Int. 2006;27(1):28. PubMed ID: 16442022 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Houck J, Neville C, Tome J, Flemister A. Randomized controlled trial comparing orthosis augmented by either stretching or stretching and strengthening for stage II tibialis posterior tendon dysfunction. Foot Ankle Int. 2015;36(9):10061016. PubMed ID: 25857939 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kulig K, Reischl SF, Pomrantz AB, et al. Nonsurgical management of posterior tibial tendon dysfunction with orthoses and resistive exercise: a randomized controlled trial. Phys Ther. 2009;89(1):2637. PubMed ID: 19022863 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ringleb S, Kavros S, Kotajarvi B, Hansen D, Kitaoka H, Kaufman K. Changes in gait associated with acute stage II posterior tibial tendon dysfunction. Gait Posture. 2007;25(4):555564. PubMed ID: 16876415 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Murley GS, Menz HB, Landorf KB. Foot posture influences the electromyographic activity of selected lower limb muscles during gait. J Foot Ankle Res. 2009;2(1):35. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Imhauser CW, Siegler S, Abidi NA, Frankel DZ. The effect of posterior tibialis tendon dysfunction on the plantar pressure characteristics and the kinematics of the arch and the hindfoot. Clin Biomech. 2004;19(2):161169. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Souza RB, Powers CM. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39(1):1219. PubMed ID: 19131677 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    McKeon PO, Hertel J, Bramble D, Davis I. The foot core system: a new paradigm for understanding intrinsic foot muscle function. Br J Sports Med. 2015;49(5):290.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    McKeon PO, Fourchet F. Freeing the foot: integrating the foot core system into rehabilitation for lower extremity injuries. Clin Sports Med. 2015;34(2):347361. PubMed ID: 25818718 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Jam B. Evaluation and Retraining of the Intrinsic Foot Muscles for Pain Syndromes Related to Abnormal Control of Pronation. Advanced Physical Therapy Education Institute; 2006. http://www.aptei.com/articles/pdf/IntrinsicMuscles.pdf. Accessed April 24, 2012.

    • Search Google Scholar
    • Export Citation
  • 12.

    Mulligan EP, Cook PG. Effect of plantar intrinsic muscle training on medial longitudinal arch morphology and dynamic function. Man Ther. 2013;18(5):425430. PubMed ID: 23632367 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Janda V, Vavrova M. Sensory motor stimulation. In: Liebenson C, ed. Rehabilitation of the Spine: A Practitioner’s Manual. Baltimore, MD: Willians & Wilkins; 1996.

    • Search Google Scholar
    • Export Citation
  • 14.

    Jung D-Y, Koh E-K, Kwon O-Y. Effect of foot orthoses and short-foot exercise on the cross-sectional area of the abductor hallucis muscle in subjects with pes planus: a randomized controlled trial. J Back Musculoskel Rehabil. 2011;24(4):225231. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Drewes L, Beazell J, Mullins M, Hertel J. Four weeks of short foot exercises affect lower extremity function, but not alignment, in patients with lower extremity injuries. J Athl Train. 2008;43(3):S105S106.

    • Search Google Scholar
    • Export Citation
  • 16.

    Kim M-H, Kwon O-Y, Kim S-H, Jung D-Y. Comparison of muscle activities of abductor hallucis and adductor hallucis between the short foot and toe-spread-out exercises in subjects with mild hallux valgus. J Back Musculoskelet Rehabil. 2013;26(2):163168. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lynn SK, Padilla RA, Tsang KK. Differences in static- and dynamic-balance task performance after 4 weeks of intrinsic-foot-muscle training: the short-foot exercise versus the towel-curl exercise. J Sport Rehabil. 2012;21(4):327333. PubMed ID: 22715143 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Tome J, Nawoczenski DA, Flemister A, Houck J. Comparison of foot kinematics between subjects with posterior tibialis tendon dysfunction and healthy controls. J Orthop Sports Phys Ther. 2006;36(9):635644. PubMed ID: 17017268 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Redmond AC, Crane YZ, Menz HB. Normative values for the foot posture index. J Foot Ankle Res. 2008;1(1):6. PubMed ID: 18822155 doi:

  • 20.

    Davis RB III, Ounpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum Mov Sci. 1991;10(5):575587. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Twomey DM, McIntosh AS. The effects of low arched feet on lower limb gait kinematics in children. The Foot. 2012;22(2):6065. PubMed ID: 22155064 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lee SY, Hertel J. Arch height and maximum rearfoot eversion during jogging in 2 static neutral positions. J Athl Train. 2012;47(1):8390. PubMed ID: 22488234 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Fourchet F, Kilgallon M, Loepelt H, Millet G-P. Plantar muscles electrostimulation and navicular drop. Sci Sports. 2009;24(5):262264. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Perry J, Davids JR. Gait analysis: normal and pathological function. J Pediatr Orthop. 1992;12(6):815. doi:

  • 25.

    Powers SK, Howley ET. Exercise Physiology: Theory and Application to Fitness and Performance. 5th ed. New York, NY: McGraw-Hill; 2004.

  • 26.

    Johnson J, Harris G. Pathomechanics of posterior tibial tendon insufficiency. Foot Ankle Clin. 1997;2:227240.

  • 27.

    James DC, Chesters T, Sumners DP, Cook DP, Green DA, Mileva KN. Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behavior during walking. Int J Sports Med. 2013;34(5):438443. PubMed ID: 23059559

    • Search Google Scholar
    • Export Citation
  • 28.

    Okamura K, Kanai S, Hasegawa M, Otsuka A, Oki S. The effect of additional activation of the plantar intrinsic foot muscles on foot dynamics during gait. Foot. 2018;34:15. PubMed ID: 29175714 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Mann R, Inman VT. Phasic activity of intrinsic muscles of the foot. J Bone Joint Surg. 1964;46(3):469481. doi:

  • 30.

    Soysa A, Hiller C, Refshauge K, Burns J. Importance and challenges of measuring intrinsic foot muscle strength. J Foot Ankle Res. 2012;5(1):29. PubMed ID: 23181771 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Ridge ST, Myrer JW, Olsen MT, Jurgensmeier K, Johnson AW. Reliability of doming and toe flexion testing to quantify foot muscle strength. J Foot Ankle Res. 2017;10(1):55. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Evans SR. Clinical trial structures. J Exp Stroke Transl Med. 2010;3(1):818. PubMed ID: 21423788 doi:

  • 33.

    Pinney SJ, Lin SS. Current concept review: acquired adult flatfoot deformity. Foot Ankle Int. 2006;27(1):6675. PubMed ID: 16442033 doi:

  • 34.

    Rothermel SA, Hale SA, Hertel J, Denegar CR. Effect of active foot positioning on the outcome of a balance training program. Phys Ther Sport. 2004;5(2):98103. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1250 1250 77
Full Text Views 36 36 4
PDF Downloads 25 25 4