Acute Muscular Responses to Practical Low-Load Blood Flow Restriction Exercise Versus Traditional Low-Load Blood Flow Restriction and High-/Low-Load Exercise

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Blood flow restriction (BFR) increases muscle size and strength when combined with low loads, but various methods are used to produce this stimulus. It is unclear how using elastic knee wraps can impact acute muscular responses compared with using nylon cuffs, where the pressure can be standardized. Objective: Investigate how elastic knee wraps compare with nylon cuffs and high-load (HL)/low-load (LL) resistance exercise. Design: A randomized cross-over experimental design using 6 conditions combined with unilateral knee extension. Setting: Human Performance Laboratory. Participants: A total of 9 healthy participants (males = 7 and females = 2) and had an average age of 22 (4) years. Intervention: LL (30% of 1-repetition maximum [1-RM]), HL (70% 1-RM), BFR at 40% of arterial occlusion pressure (BFR-LOW), BFR at 80% of arterial occlusion pressure (BFR-HIGH), elastic knee wraps stretched by 2 in (PRACTICAL-LOW), and elastic knee wraps stretched to a new length equivalent to 85% of thigh circumference (PRACTICAL-HIGH). BFR and practical conditions used 30% 1-RM. Main Outcome Measures: Muscle thickness, maximum voluntary isometric contraction, and electromyography amplitude. Bayesian statistics evaluated differences in changes between conditions using the Bayes factor (BF10), and median and 95% credible intervals were reported from the posterior distribution. Results: Total repetitions completed were greater for BFR-LOW versus PRACTICAL-HIGH (BF10 = 3.2, 48.6 vs 44 repetitions) and greater for PRACTICAL-LOW versus BFR-HIGH (BF10 = 717, 51.8 vs 36.3 repetitions). Greater decreases in changes in maximum voluntary isometric contraction were found in PRACTICAL-HIGH versus HL (BF10 = 1035, ∼103 N) and LL (BF10 = 45, ∼66 N). No differences in changes in muscle thickness were found between LL versus PRACTICAL-LOW/PRACTICAL-HIGH conditions (BF10 = 0.32). Greater changes in electromyography amplitude were also found for BFR-LOW versus PRACTICAL-HIGH condition (BF10 = 6.13, ∼12%), but no differences were noted between the other BFR conditions. Conclusions: Overall, elastic knee wraps produce a more fatiguing stimulus than LL or HL conditions and might be used as an alternative to pneumatic cuffs that are traditionally used for BFR exercise.

Thiebaud, Garcia, Shirazi, and McArthur are with Texas Wesleyan University, Fort Worth, TX. Abe and Loenneke are with the University of Mississippi, Oxford, MS. Thiebaud is also with the Department of Kinesiology, Texas Wesleyan University, Fort Worth, TX.

Thiebaud (robthiebaud@gmail.com) is corresponding author.
  • 1.

    Garber CE, Blissmer B, Deschenes MR, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults. Med Sci Sports Exerc. 2011;43(7):13341359. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fahs CA, Loenneke JP, Rossow LM, Thiebaud RS, Bemben MG. Methodological considerations for blood flow restricted resistance exercise. J Trainol. 2012;1(1):1422. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Clarkson MJ, Conway L, Warmington SA. Blood flow restriction walking and physical function in older adults: a randomized control trial. J Sci Med Sport. 2017;20:10411046. PubMed ID: 28483555 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Abe T, Sakamaki M, Fujita S, et al. Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. J Geriatr Phys Ther. 2010;33(1):3440. PubMed ID: 20503732 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ozaki H, Sakamaki M, Yasuda T, et al. Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants. J Gerontol A Biol Sci Med Sci. 2011;66(3):257263. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Conceição MS, Junior EMM, Telles GD, et al. Augmented anabolic responses after 8-wk cycling with blood flow restriction. Med Sci Sports Exerc. 2019;51:8493. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kim D, Loenneke J, Thiebaud R, Abe T, Bemben M. The acute muscular effects of cycling with and without different degrees of blood flow restriction. Acta Physiol Hung. 2015;102(4):428441. PubMed ID: 26690035 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fahs CA, Loenneke JP, Thiebaud RS, et al. Muscular adaptations to fatiguing exercise with and without blood flow restriction. Clin Physiol Funct Imaging. 2015;35(3):167176. PubMed ID: 24612120 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Yasuda T, Loenneke JP, Thiebaud RS, Abe T. Effects of blood flow restricted low-intensity concentric or eccentric training on muscle size and strength. PLoS One. 2012;7(12):e52843. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Thiebaud RS, Loenneke JP, Fahs CA, et al. The effects of elastic band resistance training combined with blood flow restriction on strength, total bone-free lean body mass and muscle thickness in postmenopausal women. Clin Physiol Funct Imaging. 2013;33(5):344352. PubMed ID: 23701116 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Centner C, Wiegel P, Gollhofer A, König D. Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis. Sports Med. 2019;49(1):95108. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lixandrão ME, Ugrinowitsch C, Berton R, et al. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Med. 2018;48(2):361378. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jessee MB, Buckner SL, Mouser JG, Mattocks KT, Loenneke JP. Letter to the editor—applying the blood flow restriction pressure: the elephant in the room. Am J Physiol Circ Physiol. 2016;310(1):H132H133. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. 2015;45(3):313325. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mattocks KT, Jessee MB, Mouser JG, et al. The application of blood flow restriction. Curr Sports Med Rep. 2018;17(4):129134. PubMed ID: 29629973 doi:

  • 16.

    Luebbers PE, Fry AC, Kriley LM, Butler MS. The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. J Strength Cond Res. 2014;28(8):22702280. PubMed ID: 24476782 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Luebbers PE, Witte EV, Oshel JQ. The effects of practical blood flow restriction training on adolescent lower body strength. J Strength Cond Res. 2019;33(10):26742683. PubMed ID: 29084094 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lowery RP, Joy JM, Loenneke JP, et al. Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin Physiol Funct Imaging. 2014;34(4):317321. PubMed ID: 24188499 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Yamanaka T, Farley RS, Caputo JL. Occlusion training increases muscular strength in division IA football players. J Strength Cond Res. 2012;26(9):25232529. PubMed ID: 22105051 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Loenneke JP, Kearney ML, Thrower AD, Collins S, Pujol TJ. The acute response of practical occlusion in the knee extensors. J Strength Cond Res. 2010;24(10):28312834. PubMed ID: 20885201 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Wilson JM, Lowery RP, Joy JM, Loenneke JP, Naimo MA. Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J Strength Cond Res. 2013;27(11):30683075. PubMed ID: 23446173 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Abe T, Mouser JG, Dankel SJ, et al. A method to standardize the blood flow restriction pressure by an elastic cuff. Scand J Med Sci Sports. 2019;29:329335. PubMed ID: 30468528 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Abe T, Kondo M, Kawakami Y, Fukunaga T. Prediction equations for body composition of Japanese adults by B-mode ultrasound. Am J Hum Biol. 1994;6(2):161170. PubMed ID: 28548275 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Thiebaud RS, Abe T, Bravo JC, Giovannitti N, Sullivan AP. Muscle activation and heart rate responses to a side-step interval exercise. Clin Physiol Funct Imaging. 2018;38(2):285290. PubMed ID: 28205417 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wagenmakers E-J, Love J, Marsman M, et al. Bayesian inference for psychology. Part II: example applications with JASP. Psychon Bull Rev. 2018;25(1):5876. PubMed ID: 28685272 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    R Core Team. R: A language and environment for statistical computing. 2018. https://www.r-project.org/.

  • 27.

    Loenneke JP, Wilson JM, Balapur A, Thrower AD, Barnes JT, Pujol TJ. Time under tension decreased with blood flow-restricted exercise. Clin Physiol Funct Imaging. 2012;32(4):268273. PubMed ID: 22681603 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Loenneke JP, Balapur A, Thrower AD, Barnes J, Pujol TJ. Blood flow restriction reduces time to muscular failure. Eur J Sport Sci. 2012;12(3):238243. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Sugaya M, Yasuda T, Suga T, Okita K, Abe T. Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise. Clin Physiol Funct Imaging. 2011;31(5):411413. PubMed ID: 21771263 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287332. PubMed ID: 18195089 doi:

  • 31.

    Husmann F, Mittlmeier T, Bruhn S, Zschorlich V, Behrens M. Impact of blood flow restriction exercise on muscle fatigue development and recovery. Med Sci Sports Exerc. 2018;50(3):436446. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Loenneke JP, Allen KM, Mouser JG, et al. Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur J Appl Physiol. 2014;115(2):397405. PubMed ID: 25338316 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Yasuda T, Fukumura K, Iida H, Nakajima T. Effect of low-load resistance exercise with and without blood flow restriction to volitional fatigue on muscle swelling. Eur J Appl Physiol. 2015;115(5):919926. PubMed ID: 25491331 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hughes L, Rosenblatt B, Gissane C, Paton B, Patterson SD. Interface pressure, perceptual, and mean arterial pressure responses to different blood flow restriction systems. Scand J Med Sci Sports. 2018;28(7):17571765. PubMed ID: 29630752 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1585 1585 109
Full Text Views 52 52 0
PDF Downloads 41 41 0